Current Design of the Focusing Arrays onboard eXTP

> Yupeng XU/ IHEP, CAS 徐玉朋 中科院高能物理所 6 February 2017 – Rome, Italy

eXTP: enhanced X-ray Timing and Polarimetry Mission

- Payload characteristics
 - Short focal-length for multiple modules
 - Deployable panel for collimated modules

Large eff. Area High spectral res. High throughput

- Independent polarimeters with imaging capability
- Wide field monitor

Payload configuration

Large Area Detector (LAD) 40 modules: MCP collimator, SDD Energy range: 2-30keV Energy resolution: 250eV@6keV Field of view: 1° (FWHM) Time resolution: 10µs Sensitivity: 10µCrab(10⁴s) Effective area: 3.4m²@6keV **Spectroscopy Focusing Array (SFA)** 11 telescopes: FL 4.5m, FoV 12', SDD Energy range: 0.5-10keV Energy resolution: 180eV@6keV Time resolution: 10µs Angular resolution: 1'(HPD) Sensitivity: 0.16µCrab(10⁴s) Effective area: 0.6m²@6keV, 0.9m²@2keV

Polarimetry Focusing Array (FPA) 2 telescopes: FL4.5m, FoV12', GPD Energy range: 2-10(20) keV Energy resolution: 1.8keV@6keV Time resolution: 500µs Angular resolution: 30"(HPD) Sensitivity: 5µCrab(10⁴s) Effective area: 200cm²@2keV

Wide Field Monitor (WFM) 3 units: 1.5D coded mask, SDD Energy range: 2-50keV Energy resolution: 500eV@6keV Field of view: 3.2 Sr Location accuracy: 1' Angular resolution: 5' Time resolution: 10µs Sensitivity: 4mCrab(1day) Effective area: 170cm²@6keV

Responsibilities of the instruments

(originally from the XTP mission)

(originally from the LOFT mission)

A 'new' instrument team had been formed in November 2016, for the preliminary design of SFA and PFA, since HXMT was ready for delivery and the manpower was released.

The focusing array

- 13 independent, co-aligned telescopes
- Spectroscopic Focusing Array (SFA)
 - 11 mirror assembly equipped with SDD detectors
- Polarimetry Focusing Array (PFA)
 - 2 mirror assembly equipped with imaging gas pixel photoelectric polarimeters
- Focal length: 4.5m, Field of view: 12'
- Mirror module envelope: ≤550mm in diameter
- Accommodation on spacecraft
 - All mirror assemblies mounted on a carbon-fiber optical bench, the mirror platform
 - All focal plane camera assemblies mounted on the instrument platform
- Alignment:
 - Mirror modules: <30"
 - Focal plane detectors : <0.5mm (lateral to Focal point)

Product tree (preliminary)

Preliminary design of the telescopes

X-ray optics

Item	SFA (11 modules)	PFA (2 modules)	
Focal length	4.5 m		
Field of View	12'		
Angular res.	<1' (HPD), 3' (W90)	<30"(with a goal of 15") (HPD)	
Effective Area	~0.9 m ² @2 keV	>200 cm ² @2 keV	
(total)	~0.6 m ² @6 keV	(with a goal of 250 cm ²)	
Mirror Effective Collecting Area	>800 cm ² @ 2 keV >500 cm ² @ 6 keV		
(1 module)			
Energy range	0.5 - 10 keV	2 - 10 keV	
Envelope	≤550mm in diameter		
Working temperature	20±2 ℃		

- Solutions: Nested (conical) Wolter-I system
 - Slumped glass optics (SGO) for SFA (with a goal for PFA also)
 - Electro-formed Nickel replication (ENR) for PFA, backup for SFA

Slumped glass optics (SGO) (Tongji University)

• Optical design for SFA

- Wolter-I conical approximation
- Focal length: 4.5m
- φ=100-450mm
- Number of shells: 176
- Mirror length: 2*100mm
- $\theta = 0.15 \sim 0.71^{\circ}$

Status

- Development of slumping, metrology, simulation and assembly
- Prototype development and test
- Performance of free standing mirrors, improved from 140-220" to 60-110"
- Details in Zhanshan Wang's talk

- 1st prototype HPD=~3'
- Wednesday 12:15 12:30 Development of X-ray imaging telescope optics for eXTP mission

Electro-formed Nickel replication optics

- Nested Wolter-I system
- Focal length: 4.5m
- Field of view: 12'
- Angular resolution: 30"(15")
- Status:
 - A proven technology in Italy, similar to XMM and eROSITA (OAB & Media Lario)
 - A study team had been formed at IHEP, for the optical design, mechanical design, metrology and calibration.

Preliminary design of the polarimetry focusing mirror assembly

Focal plane camera assemblies

	SDD for SFA	GPD for PFA
Sensitive area	≥16×16 mm² (12′)	15*15mm²(11.5′)
Spatial resolution	=W90 (4mm,3')	0.1mm (4.6″)
Number of pixels	19	~10 ⁵
Energy range	0.5-20 keV	2-10 keV
Energy resolution	<180 eV@6keV	<1.8keV@6keV
Time resolution	< 10 µs	< 500µs

SDD array for SFA

GPD for PFA

SFC: Layout of the SDD array

- Pixel size
 - − W90(3') = 4mm@4.5m FL + misalignment(\pm 0.5mm) → 4~5.5mm
- Layout: 2 solutions
 - 19 hexagon cells each with side length of 2.3~3.2mm and area of 13.7~26.6mm² (field of view: 14~19')
 - Inherit the HTRS/IXO concept with cell area of 14.6mm²

SFC: SDD & readout electronics features

- Requirements
 - Energy range: 0.5-20keV
 - Energy resolution: <180eV@6keV (end of life)
 - Time resolution: ~10µs
 - Life time: 5y + extension
- Solutions
 - Sensitive thickness: 450µm
 - Low noise charge preamplifier
 - JFET on chip or monolithic cmos preamplifier (e.g. CUBE from XGLib)
 - Timing: atomic clock + GPS (accuracy better than 100ns)
 - Slow shaping time: ~µs, total processing time ≤10µs

(throughput $\geq 95\%@1Crab$) (1Crab $\approx 5kcps$)

- Fast shaping time: ≤ 200 ns (pile up $\leq 0.1\%@1$ Crab)
- Light shield: 100~150nm AI on chip, and different filters on the filter wheel
- Proton shielding: passive (AI case with composite materials)
- Calibration: radioactive sources on filter wheel
- Working temperature: $40 \pm 1^{\circ}$ (goal: -100 ~ -80°C, $\pm 0.5^{\circ}$ C)

SDD readout electronics

- Prototype available based on discrete circuits
- Integrated solutions is under investigation

Prototype of a 19-pixel SDD array Detector: 100mm², from KETEK

FWHM=189eV@5.9keV, -25℃

SFC working mode and data handling strategy

- Working mode:
 - Initial (keep room temperature for 1~2 weeks, functional test only)
 - Normal operation (aperture open, or with different filters)
 - Standby (aperture closed)
 - Calibration: 1.5/4.5/5.9keV (Fe55 + AI &Ti)
- Data handling:
 - High speed data link
 - Science events: *E* & *t* for each event
 - Data rate: 0.2Mbps@1Crab
 - Low speed data link
 - Binned data: spectrum for each pixel, ~10s
 - Light curves: for each pixel, ~1s
 - House-keepings: temperature, voltages, LV current, HV current, CSA reset frequency, status

Polarimetry focal plane camera assembly (PFC)

- Gas Pixel Detector (GPD) with imaging capability
- Prototype development
- Engineering model development

Gas pixel detector (GPD)

- Following the design by the INFN-Pisa group (Bellazzini et al.)
- Gas: DME (CH₃-O-CH₃) at 0.8 atm
- 50µm pitch (GEM foil and ASIC)

ASIC chip (1.5cm*1.5cm, 105k pixels)

GPD prototype

High Throughput X-ray Astronomy in the entrena, Ruflero-o rev 2017

Preliminary design of the PFC

PFC functional block diagram

Data handling subsystem for SFA and PFA

High Throughput X-ray Astronomy in the eXTP Era, Rome 6-8 Feb 2017

Summary

- Status
 - Instruments (SFA & PFA) definition updated.
 - The instrument feasibility study is in progress.
- Plans in the near furture
 - Improve the optical design
 - Key technology development
 - Improve the spacecraft accommodation (collaborate with CAST)
 - Determine model philosophy & test matrix
 - Define the WBS
 - Engineering model development and space qualification test

==» Payload meeting, Beijing, March 21-23