eXTP observation of supernova remnants and pulsar wind nebulae

Yang Chen Ping Zhou, & Xiao Zhang Nanjing University

Importance of eXTP on the studies of SNRs and PWNe

SNRs are believed to be the main accelerators of cosmic rays up to 3PeV Injection mechanism (for particles and energy) / acceleration efficiency / acceleration region size / *E*_max remain unclear.

eXTP is expected to address the following questions:

• What effect does the orientation of injection with respect to the direction of magnetic field have on the shock acceleration efficiency in SNRs?

• What is the intensity of the synchrotron radiation and the orientation of the magnetic field in the forward shock and, especially, the reverse shock in SNRs?

• What is geometry of the non-thermal X-ray emitting components with respect to that of the thermally emitting regions in SNRs?

• What is the configuration of the magnetic field in PWNe and what physical insight can we infer from that?

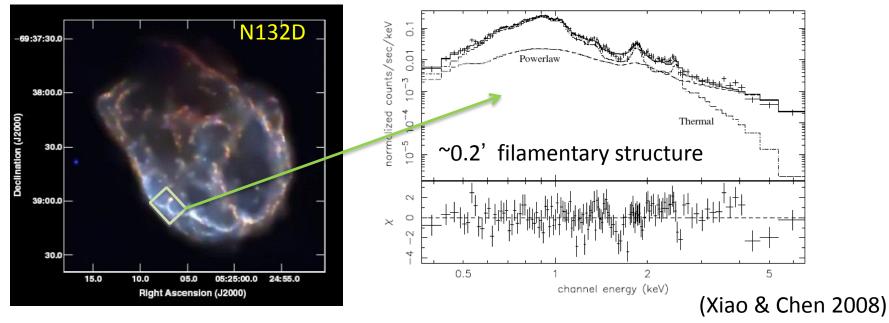
1. SNRs with Synchrotron X-rays

Chandra discovered ~10 SNRs with non-thermal (synchrotron) X-ray boundaries. Any more?

An some SNRs, non-thermal X-rays are possibly blended with thermal ones, and are needed to be differentiated.

confirmed

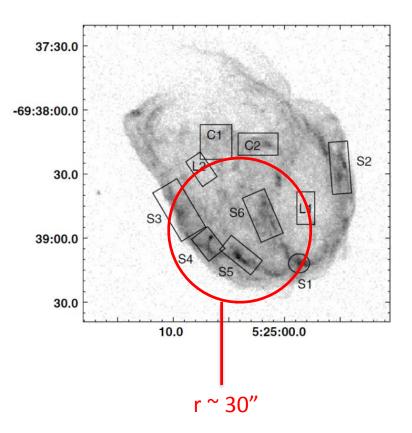
SNR	Size
G1.9+0.3	1.5 '
Cas A	5 <i>'</i>
Tycho	8′
SN1006	30'
RCW 86	42 '
RX J1713-3946	65'x55'
Vela Jr.	120 <i>'</i>


candidates

SNR	Size
N132D	2.5′x2′
G32.4+0.1	<i>6′</i>
G28.6-0.1	13' x9'
СТВ 37В	17 <i>'</i>
W28	48 '
G156.2+5.7	110'

Synchrotron X-rays from shell-type SNRs

A great advantage of eXTP for SNR studies:


able to tell the polarized synchrotron X-rays from the thermal X-rays.

E.g., in SNR N132D, thermal component + hard tail.

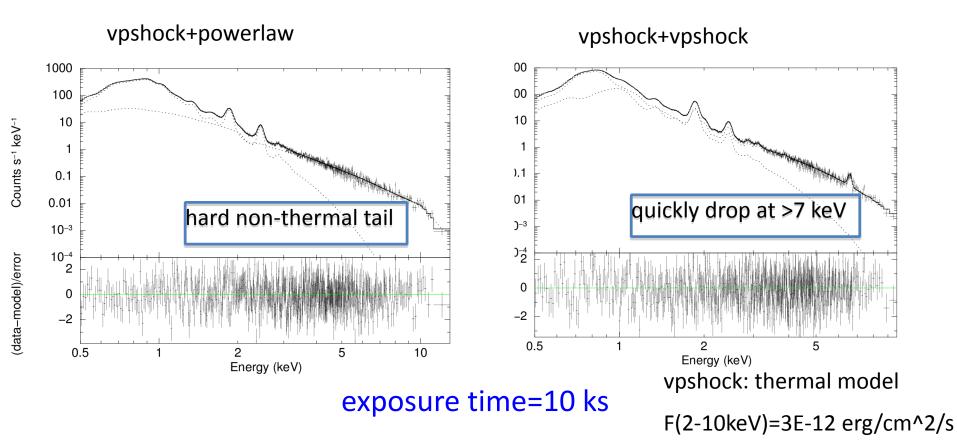
Is the hard tail synchrotron emission?

Distinguish the non-thermal and thermal emission

Model:

wabs*(vpshock+powerlaw)

Powerlaw component: photon index Γ=3.42(+-0.02) S4: F(2-10keV)=3E-13 erg/cm^2/s

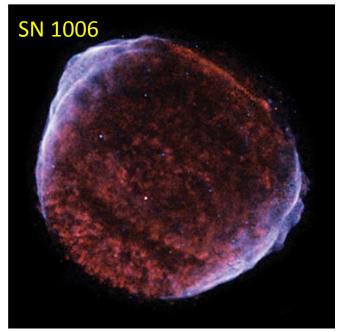

Circle: F(2-10keV)= 4E-12 erg/cm^2/s

Entire: F(2-10keV)>~1E-11 erg/cm^2/s

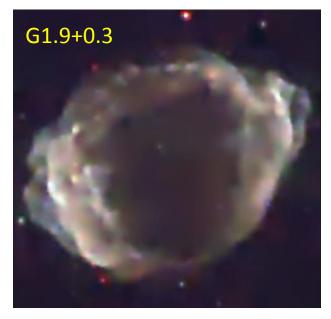
If at *d* of Galactic SNRs (~10kpc)

X-ray flux of order: 1E-10 to 1E-9erg/cm^2/s

Simulated SFA spectra

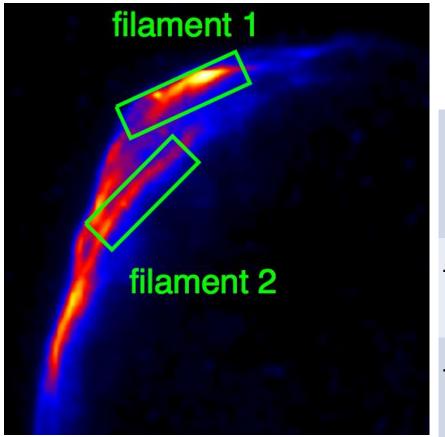


2. Role of B-field in diffusive shock acceleration (DSA)


How does the orientation of injection with respect to the direction of B-field effect the acceleration efficiency?

"quasi-parallel scenario" vs. "quasi-perpendicular scenario"

(Fulbright & Reynolds 1990)

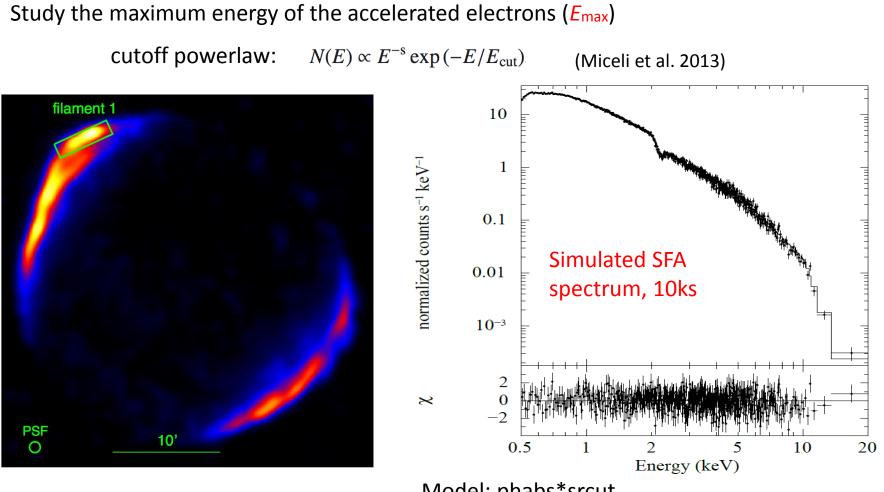


bilateral SNR, e.g. SN1006, "polar caps" or "equator"?

Long-standing debates up to now for SN1006, e.g.: Quasi-parallel: Reynoso+2013, Schneiter +2015 Quasi-perpendicular: Matsumoto+2012, 2013; Caprioli & Spitkovsky 2014; West+2017

"Role of B"? 2-D Polarization Imaging

Assuming degree of polarization =17% Exposure =1 Ms

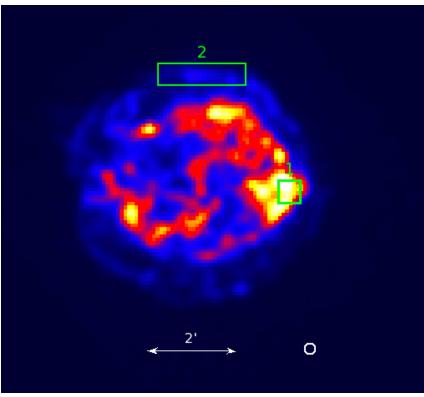

errors of the PFA measurements

region	flux (2-10 keV; ergs/cm^ 2/s)	σ dop (%)	σ _{ΡΑ} (degree)
filament 1 (5.3'x1.4')	4.1E-12	1.7	3.0
filament 2 (5'x1.5')	3.4E-12	1.9	3.4

SN1006 2-8 keV image with GPD's resolution (15")

dop: degree of polarisation PA: position angle

Spatially resolved spectroscopy of SNRs

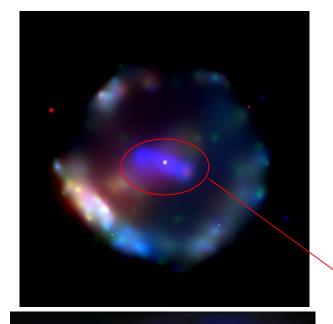


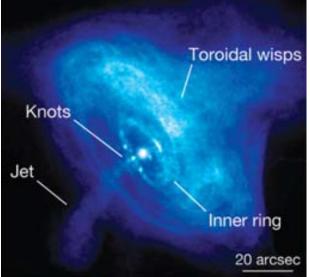
SN1006 2—8 keV image with 1' resolution $hv_{ch} = 13.9 \left(\frac{B_{\perp}}{100 \, \mu G}\right) \left(\frac{E}{100 \, \text{TeV}}\right)^2 \text{keV},$

Model: phabs*srcut NH=6.8e20, alpha=0.57 (fixed; Bamba et al.2008) E_cut =1.11e17 Hz (+-1.8e15 Hz) or 0.46 keV

3. Synchrotron radiation and B-field in the forward shock and reverse shock

Acceleration at reverse shock: In Cas A, most synchrotron radiation comes from the reverse shock (Helder & Vink 2008; Uchiyama et al. 2008)

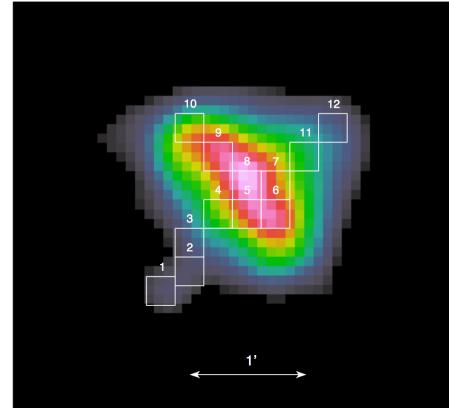

Cas A 2-8 keV image with GPD's resolution (15")


Assuming polarization degree=10% Exposure = 1Ms

errors of the PFA measurements

region	flux (2-10 keV; ergs/cm^ 2/s)	σ _{dop} (%)	σ _{PA} (degree)
1 (0.5') reverse shock	3.5E-11	0.6	~1.9
2 (2'x0.5') forward shock	1.7E-11	0.8	~2.5

4. Pulsar wind nebulae (PWNe)

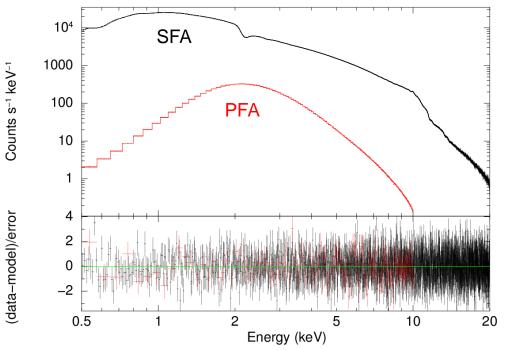

PWNe harbored in SNRs has prominent polarized sync. X-rays (radio *P*-degree up to 50%, Reynolds 2012). P = (s+1)/(s+7/3)

eXTP observation: Subeneficial to filtering/highlighting PWNe in SNRs, such as the PSR and PWN in the case like G11.2-0.3.

Sobtains degree of polarization and distribution of magnetic field

eXTP spectroscopy and polarimetry of Crab

unprecedented measurement of polarization in PWNe (dop & B-field)


Crab 2-10 keV X-ray image with GPD's resolution (15")

Assuming polarization degree=19% Exposure = 50 ks

errors of the measurements

region (15"x15")	σ _{dop} (%)	σ _{PA} (degree)
1	1.9	3.5
2	2.1	3.5
3	1.7	2.7
4	0.9	1.4
5	0.7	1.2
6	0.7	1.1
7	0.8	1.3
8	0.6	1.0
9	0.7	1.1
10	0.8	1.3
11	1.1	1.7
12	1.6	2.6

eXTP spectroscopy and polarimetry of Crab

Crab 10ks, Model: phabs*powerlaw

(Gaensler & Slane 2006)

Goals

- Survey of SNRs emitting synchrotron X-rays to study the CR electron acceleration
- Role of B-field in diffusive shock acceleration
- Forward/(Esp.) reverse shock synchrotron
- Pulsar wind nebulae (PWN) in SNRs and their Bfield

Thank you!