Using mHz QPOs to put constraints on neutron star size and equation of state with eXTP

Holger Stiele

National Tsing Hua University, Hsinchu

Wenfei Yu (SHAO), Albert K. H. Kong (NTHU)

ApJ, 831, 34

High Throughput X-ray Astronomy in the eXTP Era, Roma, 6. February 2017

40 1636-536

- Low-mass neutron star X-ray binary
- Atoll source Hasinger & van der Klis 1989 Persistent, intensity varies up to a factor 10; ~40 day cycle Shih et al. 2005; Belloni et al. 2007; Altamirano et al. 2008 S Discovered 1974 with Copernicus and Uhuru Giacconi et al. 1974; Willmore et al. 1974 Orbital period ~3.8 hr; companion star ~0.5 M_{\odot} ; NS ~1.6-1.9 M_{\odot} ; distance 6.0±0.5 KPC van Paradijs et al. 1990; Giles et al. 2002;

Casares et al. 2006; Galloway et al. 2006

H. Stiele

441676567 im in Broppetiefes

H. Stiele

4U 1636: milli-hertz QPOs

- Detected by Revnivtsev et al. 2001
- Observed at L_{2-20keV} ~ 5-11×10³⁶ erg s⁻¹ close to the transition luminosity between stable and unstable burning
- Fractional rms amplitude strongly decrease with energy
- Possible connection to type I X-ray bursts
- Frequency systematically decrease with time, until oscillations disappear & a type I burst occurs Altamirano et al. 2008; Lyu et al. 2014; 2015
- Supports connection to type I X-ray bursts

Pulse profile

- 2009 March & September XMM-Newton EPIC/pn timing mode observations
- Longest, continuous exposure before type-I X-ray bursts (13.3 & 10.4 ks)
- Full energy range
- Assumption free approach
- Using local maxima and minima to estimate a profile template
- Refining template through correlations

2

Energy (keV) Energy (kev)

 \mathbf{X}^{2}

-200

Energy spectrum

- "quiescent" emission $(0.0 \le \phi \le 0.3; 0.8 \le \phi \le 1.0)$: absorbed blackbody + disc blackbody
- Oscillatory burning mode across the whole NS surface Heger et al. 2007, ApJ, 665, 1311
- Variable blackbody temperature:
 - Fix radius (R_{NS}) at "quiescent" value
 - Temperature changes
 - ightarrow Huge change in $\chi^2_{
 m red}$; $\chi^2_{\rm red}$ substantially larger than 1
 - Fits not acceptable ĕ
 - Residuals show additional spectral component

Φ**= 0.5**

S

5

Energy spectrum

- "quiescent" emission: absorbed blackbody + disc blackbody
- Additional blackbody:
 - constant temperature
 - emission area changes with pulse profile
- Variable disc blackbody:
 - constant inner disc radius
 - negligible change in inner disc temperature

→ mHZ QPO origins on NS surface

Stiele et al. 2016, ApJ, 831, 34 H. Stiele

NS radius

Maximum of emission area -> lower limit on NS radius

fitting atmosphere spectra for different effective gravity values and He enriched (Lyu et al. 2015) compositions in the $0.5-1.1\times10^{37}$ erg s⁻¹ luminosity range (Suleimanov et al. 2012) with a diluted blackbody in the 1-10 keV range, appropriate for EPIC/pn

$$R_{\rm BB}^2 = 216.7^{+93.2}_{-86.4} \text{ km}^2 \rightarrow R_{\rm BB} = 14.7^{+2.9}_{-3.3} \text{ km}$$

Equation of state

- [§] Lower limit on NS radius: 11 km (2 σ)
- Includes uncertainties on the apparent size, hardening factor, and compactness
- Including distance uncertainty lower limit remains above 10 km
- Rules out EoS that favour small NS radius

eXTP: Improving constraints

- Assume we observe one life cycle of the mHz QPO (19 ks; Lyu et al. 2015) with Low energy Focusing Array
- EXTP can reduce statistical uncertainties in the radius to ΔR_{stat.} \$ 0.15 km
- Constrain NS radius on ±1km using current estimates on distance and hardening factor
- Further improvement achievable as eXTP will improve distance and hardening factors
- Measure emission area for single mHz QPO pulse → push lower limit to larger radii

- Phase resolved spectral studies of mHz QPOs in 4U 1636-536
- MHz QPOs are not caused by variations in the blackbody temperature of the NS
- Correlation between the change of the count rate during the mHz QPO pulse and the spatial extent of a region emitting blackbody emission -> QPO origins on NS surface
- Maximum size of emission region at mHz QPO peak lower limit on NS radius constraints on EoS
- EXTP: constrain NS radius on ±1 km + improve distance and hardening factors (constrain R_{NS} on ±0.1 km)
- eXTP: measure emission area for single mHz QPO pulse
 push lower limit to larger radii

Thanks for your attention 谢谢

H. Stiele