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Why Observatory Science?

- eXTP is a mission with 3 primary goals: SG, DM & SM

- eXTP has 4 instruments with capabilities that go far beyond
these goals and can serve a broader community

- eXTP will at some level be open to the community as an
observatory

- as prime facility

- as secondary facility to observatories at other wavelengths
and information messengers
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eXTP excels In..

- lLarge effective area from soft to hard X-rays, combined with
high-throughput and CCD-like spectral resolution

— short time-scale phenomena

- Polarimetry.
- Geometry of magnetic fields and scattering media

- Large duty cycle imaging all-sky monitor in classic X-ray band
- sub-1 hr bright phenomena

Iming = transients , (qQ)POs, non-statistical noise..

- X-ray bursts, gamma-ray bursts, flares, fast x-ray SG
transients, pulsars, QPOs
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But eXTP Is also good at...

- Fast CCD-like Spectroscopy.
- Fe-K reverberation
- Cyclotron line phase-resolved

- lLong-term moderate-sensitive (101t erg/s/Zcm2) monitoring

- WFM collects large amounts of exposure time, much more sensitive
than ASMs on RXTE, Astrosat

- Monitoring AGN and BL Lacs
- Faint long-term transients (peculiar class of LMXBS)

- |Large effective area and low(er) background at sub-2 keV.
energies

- Short term low-E behavior

- Deep sensitivity (10 ¢ erg/s/cm2 @ 10> S)
- Diffuse objects (SNR, clusters)

b



Observatory Science touches on many subjects

- Erom small/nearby to large/ftar: stellar flares, binary stars,
cataclysmic variables, x-ray binaries, x-ray bursts, supernova
remnants, intermediate-mass black holes, active galactic nuclel,
clusters of galaxies, gamma-ray bursts

- Relevant questions in Observatory Science WG:
- What is the importance?

- What pressing issues can exXTP particularly address?

- Drawing from 12 LOFT White Papers (arXiV:1501.027[66-
77]), plus additional capabilities from SFA and PFA
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Why important?
Use ESA Cosmic Vision context

1.What are the conditions for planet formation
and the emergence of life?

1.1 From gas and dust to stars and planets

Map the birth of stars and planets by peering into the highly obscured
cocoons where they form

1.2 From exo-planets to biomarkers

Search for planets around stars other than the Sun, looking for
biomarkers in their atmospheres, and image them

1.3 Life and habitability in the Solar System

Explore in situ the surface and subsurface of the solid bodies in the Solar
System most likely to host - or have hosted - life

Explore the environmental conditions that makes life possible

2. How does the Solar System work?

2.1 From the Sun to the edge of the Solar Syste
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Observatory science with eXTP
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Observatory Science subjects in LOFT

- Terrestrial Gamma-ray Flashes
- Stellar flares

- Cataclysmic variables

- LMXBs

- HMXBs

- Accretion and ejection

- Thermonuclear flashes on neutron stars
- Pulsars

- Tidal disruption events

- Flares on AGN and blazars

- Gamma-ray bursts

- eXTP synergy with other messengers
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Observatory Science subjects / other talks

- Terrestrial Gamma-ray Flashes

- Stellar flares

- Cataclysmic variables

- [LMXBs

- HMXBs > Romano

- Accretion and ejection > Feng, Papitto, Liu
- Thermonuclear flashes on neutron stars > 3 Zhangs
- Pulsars > Mignani, Papitto

- Tidal disruption events

- Flares en AGN and blazars

- Gamma-ray bursts > Amati, Wu

- Supernova remnants - Chen

- eXTP synergy with other messengers 2> Funk, Shearer, Xu

o~ I-i Eﬁgnetars, accreting ms pulsars, SFXTs, specific objects



Observatory Science subjects / this talk

- Terrestrial Gamma-ray Flashes
- Stellar flares

- Cataclysmic variables

- LMXBs

- HMXBs

- Accretion and ejection

- Thermonuclear flashes on neutron stars
- Pulsars

- Tidal disruption events

- Flares on AGN and blazars

- Gamma-ray bursts

- Supernova remnants

- eXIP symbiesis with other messengers

b



Stellar flares (<102 erg/s @ —10 pc)
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Why important?

- Stellar (super)flares can influence the environmental conditions
that make life possible (CV1.3)

What are pressing Issues?

- What are the properties of non-thermal particles responsible for
the initial flare input? (LAD)

- What are the physical conditions of the thermal plasma whose
emission dominates late stages of stellar flares? (SFA)

- What i1s the maximum (super)flare energy? (WFM)
- Are there any stars from which unexpected flares occur? (WFM)
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Kepler found 1547 superflares from 279 G-type stars
(Maehara+ 2012, Shibayama+ 2013)
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Superflares
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Superflare simulation with LAD

(Drake 2016)
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Accreting white dwarfs (<10°4 erg/s @ —100 pc)




Z00 of CVs

= Dwarf novae: disc instabilities, optical brightening (2-5) mag)

= Nova explosions (classical, recurrent): due to explosive nuclear burning of
hydrogen (thermonuclear runaway) on top of the white dwarf - UNPREDICTABLE
OUTBURSTS

» supersoft X-ray emission from the very hot photosphere, until residual H-
burning turns-off (Teff: 1e5 to 1e6 K)

» mass ejection: hard X-ray emission related to shocks inside the ejecta and
between the ejecta and circumstellar matter

» high-E gamma-rays (E>100 MeV, detected with Fermi/LAT:, related to particle
acceleration in strong shocks in the ejecta. Early and with very short duration

» case of symbiotic recurrent novae (Red Giant wind), e.g., RS Oph, but also
in classical novae (Main Sequence companion):

» hard X-rays also produced when accretion is resumed (CV-like emission) - Lx
=1033 - 103% erg/s, kT up to 20keV lasting a few yrs
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Why important?

- Growing to Chandrasekhar limit, they are a viable path to type-
la supernovae which are employed as cosmology probes (CV
4.1)

- They are probes of symbiotics = strong polluters of interstellar
medium that gives rise to the birth of new stars and planets (CV
1.1)

- They are a non-relativistic benchmark for accretion/ejection
phenomena in LMXBs

What are pressing iIssues?

- How does mass ejection work in nova explosions? Does it
obstruct the path to type-la SNe?

- What causes dwarf novae outburst diversity and what are the
conditions for disk-jet launch?

- How does matter accrete onto white dwarfs?
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RS Oph: 2006 eruption

RXTE obs., Sokoloski+ 2006
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Low-mass X-ray binaries (<10°¢ erg/s @ 10 kpc)
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Why important?

- Prime target of exXTP

- They are production sites of (fast rotating) neutron stars and
black holes (CV 3.1 [SG Kerr BHs], CV 3.3 [Dense matter])

What are pressing Issues?

What is the complete population of LMXBs?
- Mass gap NSs/BHs?
- Very faint X-ray transients?
- How efficient is the process of neutron star spin up?
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-/‘l Burst Oscillation Sources

W Accretion Powered Pulsars
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Very faint transient LMXBs

e Discovered either

- with moderately sensitive instruments, through type-1 X-ray
bursts as typical for NS LMXBs (e.g., In 't Zand et al. 1998,
Cornelisse et al. 2002, Wijnands et al. 2009, Degenaar
2011)

- In large-area surveys (e.g., Wijnands et al. 2006)
- Outside bursts: L., < 10°° erg/s
- Explanation unclear:

- Ultracompact X-ray sources

- Stellar wind accretion

- B-inhibited accretion

- Optical follow-up often difficult (high NH), but when successful
usually consistent with ordinary LMXBs (e.g., Degenaar et al.
2010, Kaur et al. 2017)

- Many more? Also BH systems? > WFM
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Thermonuclear flashes on neutron stars




Brightest burst in RXTE-PCA from 4U 0614+09
a showcase of high time-resolution science

(in 't Zand+ 2014)




Why important?

- Brightest phenomenon from NS surface - dense matter probe
(CV 3.3)

- Exhibits nuclear reactions seen nowhere else (CV 4.3)

What are pressing Issues?

- How does flame spreading work?

- What is the origin of burst oscillations in burst tails?
- Can bursts spread unusual isotopes?

- How do superbursts work?

- What are the circumstances for stable 3o burning on neutron
star surface?
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(Mahmoodifar &

Different ignition latitudes Strohmayer 2016)
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Burst oscillations — answers with eXTP-LAD

- Assume flux as for 4U
1636-536 — a prolific
burster

- Viewing inclination
angle 70 deg

- Ignition co-latitude

- Red: 30 deg
- Green: 85 deg
- Blue 150 deg

- Magenta: larger delta-
T (2 instead of 1.5
keV)

- Cyan: slower flame
speed
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(2-30 keW)

Flux (cts s cm™)

Superburst simulation (Keek et al. 2012)
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Oscillation modes

- Mode oscillations from superbursts as in Strohmayer &
Mahmoodifar (2014) analysis of 1636 superburst

- Can be valuable for DM science

STROHMAYER & MAHMOODIFAR

Pulsar
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Frequency (o/Q)
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High-mass X-ray binaries (<1038 erg/s @ 10 kpc)




Why important?

- Dominant source of X-ray output of a star-forming region/galaxy

- We do not understand well (super)giant wind structures, mass loss
rate, and heavy-mass stars

- They may be origins of (NS,BH)-(NS,BH) mergers > GWs
What are pressing guestions?

- What is the wind geometry from polarization? (PFA)

- What role do clumps play in the wind? 2> Romano talk

- How do torque reversals work; how does the wind play this out?
- What is B (cyclotron lines)? (LAD)
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‘All-sky / All-the-time" monitoring
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Phase-dependent polarization due to scattering In

the wind

- Kallman et al. 2015
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Blazars & Active galactic nuclei (<104 erg/s @ —1 Gpc)




Why important?

- What is the growth of supermassive BHs (CV 4.3)?
- How are TeV photons produced?

What are pressing Issues?

- How do fast (—min) gamma-ray flares come about?
- What accelerates highly energetic electrons?
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PFA measurements

Abdo et al. 2010, Nature, 463, 919
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Narrow Fe line Reverberation

Goal: monitoring the Fe line and the continuum in order to
Investigate the geometry and location of the reprocessing
material.

Expected time-scales are from weeks to years (BLRs, Torus)

What can be done now?

Swift BAT 'continuous' lightcurves for the continuum
Badly sampled Fe line fluxes from different instruments
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Narrow Fe line reverberation with eXTP

eXTP will perform a well-sampled
monitoring for the narrow Fe line (and
Compton reflection for the brightest
AGN) with short observations

in 1 ks for ImCrab AGN the Fe line flux
can be recovered with SFA+LAD with
an uncertainty of ~5-10%

The WFM will produce continuous
light-curves with 3o daily (on average)
time-bins for bright sources ( 1019 cgs
in the 7-50 keV band, i.e., above the
Fe K edge). Weaker objects ( 5 x101!
cgs) will have 30 weekly (on average)
time-bins

WFM+SFA+LAD combined capabilities!

normalized counts s~ keV-!

1ks
1mCrab AGN
=
PR T R R | M 1 N " PR S R R | M
0.5 1 2 5 10 20
Energy (keV)

These timescales are perfectly suited for
the Fe narrow line reverberation analysis,
since the expected timescales are from
days to weeks to years (external disk,

BLRs, Torus)
Credit A. De Rosa



eX TP synergy with other observatories..
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- White Paper is for White Paper

- promoting the mission to community

- show broad interest to national funding
agencies and ESA

- 1St version eXTP White Paper ready
- Used for advancing eXTP in China

- 30 pages
- 29 authors

- Based largely on 12 LOFT White Papers Observatory science with eXTP
- 140 pages White Paper in Support of the Mission Concept of the

Enhanced X-ray Timing Polarimetry mission

- 277 authors
- Missing important science?
- Use of polarization capability
- Low-E science
- Please:
- Provide further ideas

- Join us, join the paper (go to exXTP
website, click 'SWG registration")

aigil Thank you!
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