Fe line diagnostic in accreting black holes Accretion under strong field gravity regime

Alessandra De Rosa IAPS/INAF eXTP Workshop - Rome 2017

The two flavours Accreting BH

stellar mass BHs scattered in galaxies (X-ray binaries) supermassive BHs in the center of galaxies (AGN and quasars)

Close to the BH, most of the physical processes are the same. we can learn a great deal by comparing the two families

What really matters in these studies is the n. of photons (i.e. flux, F_{obs}) per unit of light crossing time scale $\sim R_g/c \sim GM/c^3 \sim 500 M_8 s$

eXTP Workshop - Rome 2017

 $10^{6}-10^{9} M_{sun} R_{g}/c=50s$

 $\begin{array}{l} \text{8-10 } \text{M}_{\text{sun}} \\ \text{R}_{\text{g}}/\text{c}{=}50 \mu\text{s} \end{array}$

(some) Open questions

- ✓ how does matter behave in the strong GR field regime?
- ✓ what are the processes near the event horizon? (accretion/ejection)
- ✓ How does the spin affect the emission/jet processes?
- ✓ how are BH spins distributed? (BH birth/growth)

10⁶-10⁹ Msun R/c=50s

X-ray tools (some) Relativistic reflection - spectral Thermal disc emission - spectral High Frequency QPOs - timing Polarization degree - polarimetry 8-10 Msun R/c=50µs

The Broadband X-ray spectra

The X-ray reflection spectrum

the "lamp-post" model

Compton Scattering & Photoelectric absorption

 ∞ Inclination $\propto \Omega/2\Pi$ (coverage, isotropy) ? Ab

> Reynolds 96 Ross & Fabian 99, 05

A. De Rosa

Fe Ka emission line from different disk radii

Brenneman & Reynolds 2006; Dauser + 2010 hop - Rome 2017 A. De Rosa

X-ray broad band reflection: relativistic effects

Doppler shifts relativistic beaming gravitational redshift gravitational light bending

The Effects of SFG are all involved in modelling the spectral-timing results in a wide energy band

SFG BH diagnostic: Fe line (variability)

SMBHs - AGN

✓ Disk Fe line profile

✓ Phase resolved Fe line. Orbiting Hot Spot

✓ X-ray reverberation. Time lags

Stellar mass BH - XRB

- ✓ Disk Fe line profile
- ✓ Continuum fitting
- ✓ X-ray reverberation. Time lags
- ✓ QPOs
- ✓ QPOs phase resolved polarimetry

SFG BH diagnostic: Fe line (variability)

SMBHs - AGN

✓ Disk Fe line profile

✓ Phase resolved Fe line. Orbiting Hot Spot

✓ X-ray reverberation. Time lags - *Uttley's talk*

Stellar mass BH - XRB

- ✓ Disk Fe line profile
- ✓ **Continuum fitting** *Lijun's talk*
- ✓ X-ray reverberation. Time lags
- ✓ QPOs Stevens's talk
- QPOs phase resolved polarimetry Ingram's talk

AGN SMBHs

Measuring the SMBHs spin Ingredients

- > High S/N in X-ray band: ≥ $2x10^5$ counts in 2-10 keV
- > Broad line with $r_{in} \le 10 r_g$ in unobscured (N_H<10²² cm⁻²) AGN
- Broad energy band is needed to model simultaneously all spectral complexities: Complex absorption, disk ionization, disk emissivity, soft excess, Fe abundance

~30 bright AGN in the nearby Universe (Miller+ 2007, Nandra+ 2007, de La Calle Perez+ 2010, Reynolds 2013, Marinucci+14, Patrick+14, Risaliti+13) but ~10¹² accessible universe

Very Broad Fe-K line profiles with XMM in: AGN X-ray Binaries

GX339-4

Broadband relativistic reflection with NuStar

NuStar BH AGN spin

Target	Spin	Data	Reference
IH0707-495	> 0.988	XMM-Newton/NuSTAR	Kara et al. (2015)
Ark I20	~ 0.5	XMM-Newton/NuSTAR	Matt et al., 2014
Fairall 9	0.973 <u>+</u> 0.003	XMM-Newton/NuSTAR	Lohfink et al. (2016)
MCG-6-30-15	$0.91\substack{+0.06\\-0.07}$	XMM-Newton/NuSTAR	Marinucci et al., 2014a
Mrk 335	> 0.9	Swift/NuSTAR	Parker et al., 2014
NGC 1365	> 0.97	XMM-Newton/NuSTAR	Risaliti et al., 2013 Walton et al., 2014
NGC4151	> 0.9	Suzaku/NuSTAR	Keck et al. (2015)
SWIFT J2127.4	$0.58^{+0.11}_{-0.17}$	XMM-Newton/NuSTAR	Marinucci et al., 2014b

Measuring black hole spins in AGN: where do we stand?

The current uncertainties on the continuum decrease the statistical quality of present measurements (if the continuum is properly modelled) and, more importantly, may introduce systematic errors on spin (if the continuum is improperly modelled).

Soft-excess NGC 3783

Soft excess <2 keV reproduced with Scattered component + relativistic reflection

a>0.9 Brenneman+11

Soft excess <2 keV reproduced with comptonized component a<0.3 Patrick+11

Key measurement: Time resolved spectral variability disk Doppler tomography

AGN variability is likely associated to "activation" of the X-ray regions above the disk. The flares produce an echo in the observed reflection components on time-scales comparable light-crossing of 1 R_g

While time averaged Fe profiles can be expressed in terms of r_{g} , losing any information about BH mass, assuming the 'hotspot' (keplerian) corotating with the disc, the orbital period (and then the BH mass) can be measured

Iwasawa+04 De Marco+08

Orbiting spots: Disc Doppler tomography

reflection components vary on orbital period time-scales $T_{orb}=310 (r^{3/2}+a)M_7 s$

From **time resolved spectroscopy** it is possible to derive the radius both in units of the BH mass and in standard units → BH mass (and I.I to the spin)

Orbiting spot observations: NGC3516

$$M_{X-ray} = 1-5 \ 10^7 \ M_{sun} - M_{opt} = 1.68(0.33) 10^7 \ M_{sur}$$

The Fe K line profiles during the on (solid circles) and off (open squares) phases of the red feature.

The excess emission map on the timeenergy plane. The pixel size is 2 ks in time and 100 eV in energy. 4 cycles 25 ks orbital period at 9Rg (Iwasawa+04, Turner+06)

KTP Workshop - Rome 2017

Orbiting spot with XMM-Newton

Fe line variability in the red and blue energy bands (5.4-6.1/6.8-7.2 keV) has been found in 12 out 36 observations but still to be confirmed at high cl

Spin in BHB

Relativistic reflection (like SMBHs)

Continuum fitting: Fitting the thermal 1-10 keV spectrum of the accretion disk

Relativistic reflection with NuStar

A. De Rosa

Measuring BH spins in XRB: where do we stand?

- Cyg X-1 high-soft state 30ks •
- Huge S/N no pile-up (NuStar)
 - Cold/Warm photoionized absorbers
 - Relativistic reflection
 - Disk inclination disagrees with optical measurements
 - Different models for disc emissivity profile produce different value of the BH spin

A big advantage will be to have different simultaneous diagnostics

Continuum fitting technique

 Requires accurate values of M, i, D; also knowledge of spectral hardening from disk atmosphere (e.g., Davis+ 2006).

Radius R_{ISCO} of Disk Hole F and $T \longrightarrow$ solid angle D and $i \longrightarrow R_{ISCO}$

F, T \rightarrow X-ray observations, assume T = T_{ISCO} cos (i) and D are known calculate a from R_{ISCO} and M_{BH}

McClintock+11

CF method and observations

Requirements:

- Spectrumn dominated by Disk components
- Theoretical profile for F(R)
- Thin disk
- Knowledge of i, D, M

Steiner+ 09,+11

BH Spin in XRBs

Black Hole	Spin (CF)	Spin (Fe K)	References
GRS 1915+105	> 0.98	0.98 ± 0.01	McClintock+ (2006); Blum+ (2009)
Cygnus X-1	> 0.97	0.05 ± 0.01	Gou+ (2011); Miller+ (2009)
LMC X-1	0.92 ± 0.06		Gou+ (2009)
M33 X-7	0.84 ± 0.05		Liu+ (2008, 2010)
4U 1543-47	0.80 ± 0.05	0.3 ± 0.1	Shafee+ (2006); Miller+ (2009)
GRO J1655-40	0.70 ± 0.05	0.98 ± 0.01	Shafee+ (2006); Miller+ (2009)
XTE J1550-564	0.34 ± 0.24	0.76 ± 0.01	Steiner+ (2011); Miller+ (2009)
LMC X-3	< 0.3		Davis+ (2006)
A 0620-00	0.12 ± 0.18		Gou+ (2009)
GX 339-4		0.94 ± 0.02	Reis+ (2009)
XTE J1650-500	0.87 ± 0.01*	0.79 ± 0.01	Miller+ (2009); Miller+ (2009)
SAX J1711.6-380	0.6 ± 0.4*	0.6 ± 0.3	Miller+ (2009); Miller+ (2009)
XTE J1752-223		0.55 ± 0.11	Reis+ (2010)
XTE J1908+094	0.75 ± 0.09*	0.75 ± 0.09	Miller+ (2009); Miller+ (2009)
SWIFT J1753.5-0127		0.76 ± 0.15	Reis+ (2009)
XTE J1652-453		0.5 ± 0.1	Hiemstra+ (2009)

Where are we?

systematic uncertainties related to both the spectral models as well as the calibration of the spectral data (for XRB) dominate statistical errors; there is the danger that one will end up with very precise but inaccurate spin measures

key observations are

- **1. Time resolved spectroscopy**
- 2. Reverberation: time lags (Uttley's talk)
 - 3. Spectral–polarimetry of QPOs (Ingram's talk)

ALL these diagnostics together

Future perspective with

XTP: SFA

- 9000cm2 @2keV
- 6000cm2 @6keV
- 3700cm2 @10keV
- Low background
- High energy res @6 keV
- <2 keV energy band

LOFT: LAD

- 3m2 @6 keV/0.1m2 @30 keV
- Energy res CCD like
- Broad band 2-30(80) keV

PFA and WFM

SFG Science Objectives

Science topic	Key performance	Key Instrument
AGN: Doppler tomography	Effective area – BKG – Ene resolution	SFA-LAD
AGN: Fe line	Effective area – BKG – Ene resolution	SFA
XRB: Fe line	Effective area	LAD
X-ray reverberation Disc thermal emission/reverbe ration	Effective area – soft X coverage	LAD-SFA
QPOs	Effective area	LAD
QPO Phase resolved polarimetry	Effective area	LAD-GPD

eXTP: XRB Fe line

eXTP: AGN Doppler tomography

Doppler Tomography. Figure of Merit

Doppler tomography with the brightest X-ray AGN

AGN Astrophysics

Hot Corona is compact, size ~10Rg (reverberation, micorlensing Chartas+09, Fabian+15). Geometry and physics still unknown Soft-excess comptonised warm corona or blurred reflection ✓ Cold absorption regions (BLR, Torus), eclipses events, Unified Model for AGN ✓ Warm absorption(s) ✓ Disk winds and UFOs

AGN broad band properties F(2-10 keV)=2e-12 cgs - 100 ks

Map from the pc to Kpc scale: disc winds-BLR-torus

eXTP Workshop - Rome 2017

AGN broad band properties F(2-10 keV)=2e-12 cgs – 10x10 ks

Time resolved spectral variability of the primary component

White Paper

g and Polarimetry Mission

enhanced X-ray

Accretion in Strong field gravity regime

Mapping the inner regions around BHs

A. De Rosa, P. Uttley, Lijun Gou, Yuan Liu and the *eXTP-SFG WG Team*

Submit your application to the SFG-WG http://www.isdc.unige.ch/extp/swg-registration.html

Summary

- X-ray spectroscopy and timing provide a strong tools for probing accretion under SFG regime. Latest XMM/NuStar results on BHs spin are still not conclusive.
- New key observations are needed to disentangle systematic effects mainly due to modellization (SMBH) or calibration (XRB)
- The eXTP mission is particularly suited to address these issues with 3 different key measurements which complement each other.

Narrow Fe line Reverberation

Goal: monitoring the Fe line and the continuum in order to Investigate the geometry and location of the reprocessing material.

Expected time-scales are from weeks to years (BLRs, Torus)

What can be done now?

Swift BAT 'continuous' lightcurves for the continuum Badly sampled Fe line fluxes from different instruments

NGC 4151

Chandra HEG

6.5

Rest Energy (keV)

NGC 4151 (0402660201)

7.5

photons cm-2 s-1 keV-

2×10

55

Narrow Fe line reverberation with eXTP

- eXTP will perform a well-sampled monitoring for the narrow Fe line (and Compton reflection for the brightest AGN) with short observations
- in 1 ks for 1mCrab AGN the Fe line flux can be recovered with SFA+LAD with an uncertainty of ~5-10%
- The WFM will produce continuous light-curves with 3σ daily (on average) time-bins for bright sources (10⁻¹⁰ cgs in the 7-50 keV band, i.e., above the Fe K edge). Weaker objects (5 x10⁻¹¹ cgs) will have 3σ weekly (on average) time-bins
- WFM+SFA+LAD combined capabilities!

These timescales are perfectly suited for the Fe narrow line reverberation analysis, since the expected timescales are from days to weeks to years (external disk, BLRs, Torus)

AGN variability with the WFM

The vertical colorbar shows the **total number of AGN** for which the WFM will return **light curves with at least 10 points** and where variability will be detected with S/N > 3. Expected 1 year WFM exposure time

Credit M. Paolillo