Spectral polarimetry of

Adam Alga S

Michiel van der Klis, Matt Middleton, Diego Altamirano, Phil Uttley, Chris Done, Tom Maccarone, Juri Poutanen, Henric Krawzynski, Matthew Liska, Casper Hesp, Sasha Tchekhovskoy, Sera Markoff

ANTON PANNEKOEK INSTITUTE

Frame dragging

Frame dragging

Tell-tale sign of precession: a rocking iron line

Rocking iron line in H 1743-322

Ingram et al (2016a)

Tomographic modeling

Tomography with eXTP

Polarization

Ingram et al (2015)

Polarization

www.youtube.com/watch?v=ieZYYfCapJg&fe
ature=youtu.be

Ingram et al (2015)

Polarization

Ingram et al (in prep)

100 ks exposure of GX 339-4 with eXTP GPDs: 200 c/s; LAD 38,000 c/s

Jet precession

BZ jet that aligns with the accretion flow!

Liska et al (in prep)

Conclusions

- Rocking iron line in H 1743-322 gives strong evidence for precession
- eXTP will enable detailed tomographic mapping
- QPOs predicted in polarization degree and angle
- p and ψ modulations relate to line centroid modulations
- Developing a method to measure variability in p and ψ
- QPOs in p and ψ should be detectable with eXTP
- Always need lots of counts long exposures of bright sources
- Using the LAD as a reference band helps!
- IXPE + AstroSat could work, particularly for a precessing

Tomographic modeling

https://figshare.com/articles/Tomographic_modelling_of_H_1743am et al (2016b) 322/3503933

Tomography with eXTP

Jet precession

BZ jet that aligns with the accretion flow!

> Clearer pol modulation than expected?

Liska et al (in prep) Image Credit: Casper Hesp

Flux: fractional rms (%)

Polarization degree: absolute rms (%)

Flux: fractional rms (%)

Polarization angle: absolute rms (degrees)

Flux: fractional rms (%)

Mean polarization degree (%)

Polarization degree: required count rate (c/s)

Polarization angle: required count rate (c/s)

p₀ & ψ₀

Simulation

Simulation

$f(\psi,t|\psi_0,p_0) = (2\pi)^{-1} \{ 1 + p_0(t) \mu \cos[2(\psi - \psi_0(t))] \}$

For the GPD, generate 100 light curves, each for a different ψ bin 32.768ks exposure, dt=1/16 s, no background

van den Eijnden, Ingram & Uttley (in prep)

- 32.768ks exposure
- <p_>>=8%, σ_{p_0} =1.4%, < ψ_0 >=-4 degrees, σ_{ψ_0} =4 degrees
- Flux = 1 photon cm⁻²s⁻¹ assuming absorbed power-law with Γ=2 and N_h=1 × 10²²cm⁻²
- 40 LAD modules 2 GPD units

- 32.768ks exposure
- <p_>>=8%, σ_{p_0} =1.4%, < ψ_0 >=-4 degrees, σ_{ψ_0} =4 degrees
- Flux = 1 photon cm⁻²s⁻¹ assuming absorbed power-law with Γ=2 and N_h=1 × 10²²cm⁻²
- 20 | AD modules 2 GPD units

- 32.768ks exposure
- <p_>>=8%, σ_{p_0} =1.4%, < ψ_0 >=-4 degrees, σ_{ψ_0} =4 degrees
- Flux = 1 photon cm⁻²s⁻¹ assuming absorbed power-law with Γ=2 and N_h=1 × 10²²cm⁻²
- 20 I AD modules 3 GPD units

8ks exposure

- <p_0>=8%, σ_{p_0} =1.4%, < ψ_0 >=-4 degrees, σ_{ψ_0} =4 degrees
- Flux = 1 photon cm⁻²s⁻¹ assuming absorbed power-law with Γ=2 and N_h=1 × 10²²cm⁻²
- 401 AD modules 2 GPD units

- 32.768ks exposure
- $< p_0 >= 4\%, \sigma_{p_0} = 0.7\%, < \psi_0 >= -2 \text{ degrees}, \sigma_{\psi_0} = 4 \text{ degrees}$
- Flux = 1 photon cm⁻²s⁻¹ assuming absorbed power-law with Γ =2 and N_h=1 × 10²²cm⁻²
- 40 LAD modules 2 GPD units

- 65.536ks exposure
- $< p_0 >= 4\%, \sigma_{p_0} = 0.7\%, < \psi_0 >= -2 \text{ degrees}, \sigma_{\psi_0} = 4 \text{ degrees}$
- Flux = 1 photon cm⁻²s⁻¹ assuming absorbed power-law with Γ =2 and N_h=1 × 10²²cm⁻²
- 10 I AD modulos 2 CDD units

Frame dragging

H/R > α

Solid body precession at average LT frequency

Fragile et al (2007); Liska et al in prep

H/R < α

Viscosity aligns inner regions with the BH and outer regions with the Bardeen & Pipers Parts (1995)

- Observed H 1743-322: ~260 ks XMM; ~70 ks NuSTAR
- Reconstruct QPO waveform in each energy band from:
- Amplitude of first and second harmonics (power spectrum)
- 2. Phase difference between the two harmonics (Ingram & van der Klis 2015)
- Ingram & Van der Klis (2015), Ingram et al (2016a) energy bands (cross-

Reconstructing a waveform in each energy band gives phase-resolved spectra!

Ingram et al (2016a)

Reconstructing a waveform in each energy band gives phase-resolved spectra!

Ingram et al (2016a)

Truncated Disk Model

e.g. Done, Gierlinski & Kubota

Setup

Frame dragging

A spinning black hole **distorts** space and time The satellite's motion is **influenced** by the spin of the black hole

00001

Lense & Thirring (1918)

Broad band noise: propagating Infrared lags X-rays

Broad band noise: propagating

- 200 ks exposure
- Bright source (~GRS 1915+105)

Inner flow / corona: ~10 % polarization

Broad band noise: propagating High polarization lags low polarization? 9×10⁴ GPD counts 8×10⁴ 9×10 Jet **XIPE** Time lag (s) 0.01 ~corona 200 300 100 0 Polarisation Angle (degrees) 0.1 s lag ~70% 0.2 0.5 2 1 Frequency (Hz) 200 ks exposure Inner flow / Bright source (~GRS corona:

1915+105)

~10 % polarization

- 200 ks exposure
- Bright source (~GRS 1915+105)

Inner flow / corona: ~10 % polarization

$$\begin{split} I(t) &= \text{GPD count rate} \\ Q(t) &= I(t) \ p(t) \ \cos[\ 2\psi(t)\] \\ U(t) &= I(t) \ p(t) \ \sin[\ 2\psi(t)\] \\ R(t) &= \text{LAD count rate} \end{split}$$

The problem:

- Want to measure $p(v) \& \psi(v)$
- But can't measure p(t) and ψ(t) for arbitrarily small time bins due to Poisson statistics
- Can measure Q(t) & U(t) Ingram & Maccarone (in prep)
 Can measure Q(v)R*(v) & U(v)R*(v)

$$\begin{split} I(t) &= GPD \text{ count rate} \\ Q(t) &= I(t) \text{ } p(t) \text{ } \cos[2\psi(t) \text{ }] \\ U(t) &= I(t) \text{ } p(t) \text{ } \sin[2\psi(t) \text{ }] \\ R(t) &= LAD \text{ } \text{ count rate} \end{split}$$

The solution:

- Define phenomenological model for p(v) & ψ(v)
- For a given set of model parameters, calculate model Q(v)R*(v) & U(v)R*(v)
- Fit to measured Q(v)R*(v) & U(v)R*(v) Ingram & Maccarone (in prep)

