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The strong gravity regime
How does gravity behave in the strong field regime?

Does General Relativity accurately describe gravity in the 
strong field regime?

eXTP  may provide crucial answers

Singularities, dark energy/matter, quantum connection +

Can other forms of matter/fields form ultra dense objects?



102 years of General Relativity
GR represents the best description of gravity we have, and has  
passed all observational and experimental tests

Eventually Gravitational Waves come to the game

weak - field has been probed extensively, what about the 
strong - gravity regime?
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The strong gravity regime

Baker et al., ApJ 802:63, (2015)
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The strong gravity regime

Baker et al., ApJ 802:63, (2015)
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Alternative theories: EDGB
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General Relativity 

A natural way to modify the strong field regime is to include 
quadratic curvature invariant in the action
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General Relativity Einstein-Dilaton- 
Gauss-Bonnet 

A natural way to modify the strong field regime is to include 
quadratic curvature invariant in the action
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QPOs and black holes 
Quasi Periodic Oscillations in the flux emitted from accreting LMXBs  
are though to originate in the innermost region of the accretion flow
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X-ray emission modulated by the azimuthal     , periastron         and  
nodal         precession frequencies⌫per

⌫� ⌫per

The Relativistic Precession Model associates 3 types of QPOs to a 
combination of the epicyclic frequencies

Stella and Vietri, Phys. Rev. Lett. 82, 17 (1999)

In GR particles on circular-equatorial orbits, will oscillate under small 
perturbations       and �✓�r



RPM
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System of 3 equations in there unknown variables

M = (5.31± 0.07)M�

r = (5.68± 0.04)rg

a? = (0.290± 0.003)

Complete application of RPM: J1665-40 discovery by RXTE
Motta et al., MNRAS 437, 2554-2565 (2014)
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r = (5.68± 0.04)rg
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produced near the horizon,  
probe of the strong field

Complete application of RPM: J1665-40 discovery by RXTE
Motta et al., MNRAS 437, 2554-2565 (2014)



Why eXTP? quality and quantity
eXTP is expected to measure QPOs frequencies with very high 
precision

For n>1 redundancy would test GR

eXTP is expected to measure multiple QPOs triplets from the 
same black hole (⌫�, ⌫nod, ⌫per)i=1,...n

3n quantities equations for 2+n variables  (M,a?, ri)

~5 times better than RXTE



Testing gravity with eXTP

Try to interpret the signals with GR and to measure the BH 
parameters

We compute two set of frequencies within EDGB theory for two 
emission radii r1,2 = (1.1, 1.4)rISCO

For General Relativity (         )                 and M1 = M2 a?1 = a?2↵ = 0

(⌫�, ⌫nod, ⌫per)1 (⌫�, ⌫nod, ⌫per)2
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�M = M1 �M2 �a? = a?1 � a?2 �r = r1 � r2

Verify that the distribution of the variables  
is consistent with a Gaussian distribution with zero mean 

~µ = (�M,�a?,�r)

P ⇠ N (~µ,⌃ = ⌃1 + ⌃2)

Testing gravity with eXTP

Rules of the game

Define �

2 = (~x� ~µ)T⌃�1(~x� ~µ)

Probability of  
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Confidence intervals
M = 5.3M�BH parameters: a? = 0.5
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Confidence intervals
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Our ability to distinguish the theory increases with the BH spin

Money in the box: more area more gain



Back up



Epicyclic frequencies
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