

ANTON PANNEKOEK INSTITUTE

UNIVERSITY OF AMSTERDAM

The effects of spectral hardness changes on reverberation lags

G. Mastroserio, A. Ingram, M. van der Klis

Overview

- Geometry of the systems
- Modelling the lag
- Reverberation with eXTP

 10^{1} **Energy (keV)**

AGN

Ark 564 $M \simeq 10^6 M_{\odot}$

Kara+ 2016

AGN

Ark 564 $M\simeq 10^6 M_\odot$ Kara+ 2016

Energy (keV)

AGN

Ark 564 $M \simeq 10^6 M_{\odot}$

Kara+ 2016

Cyg X-1

Kotov+ 2001

1000

Energy (keV)

Response Function

Previous models

Previous models

for black hole binaries

Spectral Hardness Changes

Energy (keV)

Conclusions

The new model explains both the continuum and the reflection lag consistently

- The model depends on the disk geometry and black hole parameters
- The model is analytical and very flexible for introducing new components
- We can fit our model with the cross-spectrum not only with the lag spectrum
- eXTP will provide a great improvement in the detection of reverberation lag

Thank you

Kα Iron Line Profile

Transfer Function

García&Kallman 2010

Reverberation Lag

 $\Delta t = t_1 - t_2$

Reverberation lag

