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Reverberation mapping close to
the event horizon
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X-RAY REVERBERATION
IN AGN




MNormalised counts

Frequency (Hz)

Low-frequencies: propagating accretion fluctuations?
High-frequencies: switch to X-ray reverberation?
-> we need to ensure good measurements of the lag at high frequencies



Fe K reverberation lags: measuring light-travel
times to the inner disc

Lag vs energy spectrum: measure lag of small energy bins relative
to a broad reference band. Note the different shapes in the soft band!
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AGN X-ray reverberation with NUSTAR

Swift J2127.4+5654

(Kara et al. 2015)
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GR-raytracing modelling of Fe K lags
(Cackett et al., 2014)

0 20 40 60 80 100
Time (GM/c?)

Impulse response relates intensity of line
response at a given time-delay to energy
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GR-raytracing modelling of Fe K lags

Lag (s)

NGC 4151: Cackett et al., 2014

8000 [ 3000
6000 N 2000 '
i 1000 F
4000 ~ :
- S o):
2000 = 5

[ ~1000 F .

0 :
! -2000 F

-2000 d AN e

107° 1074 1073
Energy (keV) Frequency (Hz)

Good fit obtained for 7 R, source height, reflection fraction
~1, assuming 4.6x10” My, Spin unconstrained due to
low S/N in red wing



FI al disruption events:
reverberation in Swift J1644+57
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« Blueshifted iron line implies
signal is reverberating from
the wall of a super-
Eddington, mildly relativistic
outflow.




X-RAY REVERBERATION
IN X-RAY BINARIES




Lag sensitivity: why XRBs are currently worse than
AGN for reverberation lag measurements
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AGN: variations already well-sampled with many counts per variability
time-scale = limited improvements from increasing count rate
(S/N scales with sgrt(rate))

XRBs: significant improvements from increasing count rate so individual
rapid variability events are better sampled: S/N scales linearly with rate
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The need for large collecting areas

- Assumes 100 ks exposure
| (see Uttley & Casella 2014 for details)
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Disc reverberation components
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The disk drives broadband noise
variability in the hard state
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Mapping the inflow
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X-RAY REVERBERATION
WITH eXTP




Modelling the lags
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Building the impulse response
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In practice we can make the impulse response for a given detector (e.g. LAD, 40
modules) by making a fake spectrum (xspec fakeit command) for each time delay
bin of the impulse response:
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BH XRB: eXTP reverberation lag simulations

100 ks on bright hard (1 Crab) state/hard-intermediate state, lag vs energy
measured in 50-150 Hz range, comhinatign Qf measurements from SFA+LAD.
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AGN: eXTP reverberation lag simulations

100 ks on bright (2 mCrab) AGN (4e6 Msolar), lag vs energy measured in
0.3-3 mHz range, combination of measurements from SFA+LAD.
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Self-consistency I ]
of lag and disk - o |
continuum
measurements g
Independent measurement £
of radius vs temperature B
(and test of accretion disk ) Freray (ke
theory!). i f '|-T|" R. — 6 R :
. : ' | R, =10 Rg |
By giving a radius, lags also % | |
give an area: consistency [
check on continuum fitting £ 5| f _
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Reverberation mapping polarimetry

Returning
radiation of disk
photons bent
back on to disk
has significant
Impact on
observed
polarization
signal: strongly
dependent on
black hole spin

(Schnittman & Krolik 2009)
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Reverberation mapping polarimetry
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Reverberation signal
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Light-travel times of order ~10 R /c but the changes in polarisation are
tiny so observed delay between different ‘bands’ of detected angle is
only ~0.1 R,/c



2 sensitivity to polarisation lags from
the inn_er Qisk (.1.0.0.‘55). -
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Summary and Outlook

- Inner disk reverberation signatures have been detected
and are an active field of study in AGN (also TDEs!) and
XRBs

- Sensitivity to reverberation signal increases linearly with
count rate for XRBs: going to few m? area enables
detailed study of the reverberation signal and hence
accurate mapping of inner radius and strong gravity
effects.

- Soft eXTP response from SFA also enables reverberation
mapping of disk thermal emission to large radi

- eXTP opens up new field of timing-polarimetry, allowing
new independent tests of the disk reverberation signal.



