

Lense-Thirring Precession around neutron stars with known spin

Netherlands Organisation for Scientific Research

February 7th, 2017 e-XTP Rome

Marieke van Doesburgh & Michiel van der Klis

kHz QPO frequency correlates with LF QPO

Altamirano et al. (2008)

Lense-Thirring precession might explain correlations

$$\nu_{LT} = 4.4 \times 10^{-8} \frac{I}{M} \nu_{Spin} \nu_{Kepler}^2$$

Stella & Vietri (1998)

EOS limit range of I/M

$$0.5 < \frac{I}{M} < 2$$

Friedman et al. (1986)

Striking correspondence to theory found

But the NS spin frequencies differ

Difference in spin would introduce scatter

We present the results of 13 'known spin' sources

Burst oscillation sources kHz & LF QPOs

RXTE data

We limit averaging of power spectra

Result: detailed All sources 'frequency fingerprint'

van Doesburgh & van der Klis (2016)

We find two low frequency QPOs

Correlations have indices >2

Blending of narrow features distorts correlations

van Doesburgh & van der Klis (2016)

 ν_i (Hz)

Correlations differ between sources

van Doesburgh & van der Klis (2016)

RPM in original form incompatible with Data

Three main issues:

- Frequencies are too high for realistic EOS Radiation pressure (Miller, 1999)

- Indices are >2

- No spin dependence Retrograde classical (index 2.3), magnetic precession (index 4)?

For a weakly magnetized NS, LT-precession dominates with a power law index <2 (Shirakawa, 2002)

A precessing torus might explain high indices

Ingram et al. (2009)

More detail with e-XTP

QPOs suffer from blending

Change in index as kHz QPO increases

Van Doesburgh & van der Klis (2016)

Summary

- We measured frequency correlations in 13 NS-LMXBs with known spin

- QPOs suffer from blending/smearing
- Best-fit power laws are incompatible with RPM (index, frequencies, spin)
- Frame dragging is likely only one of the torques contributing to precession

With e-XTP:

Measuring frequency correlations for more sources & in more detail