eXTP Polarimetry

A New Science Window

Hua Feng Tsinghua University

Outline

- Science with X-ray polarimetry
 - What are the unique science cases?
- A new window and beyond

 History, today, and the future
- eXTP polarimetry
 - Instrument design
 - Optimization

What can we learn with X-ray polarimetry?

- Information about the magnetic field
 - Synchrotron radiation (PWNe, SNRs, Jets)
 - Plasma polarization (Magnetized plasma)
 - Vacuum polarization (Neutron Stars)
- Information about the scattering medium
 - Thomson/Compton/InverseCompton scattering
 - Geometric Symmetry (accretion flow, BH spin, Sgr B2, etc.)

- Particle acceleration
 - Probe the magnetic fields and place constraints on the acceleration mechanism
- Need angular resolution
 - 30" or better?

Pulsar wind nebulae

Supernova remnants

- Relativistic X-ray jets
 - Role of magnetic fields in jet formation (Marscher 2014)
 - Leptonic or hadronic? (Zhang & Bottcher 2013)
 - Emission mechanism for the blazar high energy peak
- Need monitoring (for blazars) and prompt re-pointing (for GRBs)

Blazars GRB afterglows Jetted TDEs

Pulsars

Light

Cylinder

null charge surface $\Omega \cdot B = 0$

- Rotation-powered

α

closed field

region

в

polar cap

slot gar

outer

gap

Ω

test the emission geometry

Polar cap (Daugherty & Harding 1996) Slot gap (Muslimov & Harding 2004) Outer gap (Romani 1996; Takana 2007)

- Pulsars
 - Accretion-powered
 - fan beam vs. pencil beam

Pulsars

- Accreting millisecond pulsars
 - test the geometry; constraints on M/R
 - Polarimetry can help determine the geometry and orientation of the B fields

Pulsars

- Surface thermal emission
 - QED effects (vacuum birefringence) & B-field geometry
 - Tested in optical (RX J1856.5-3754; Mignani et al. 2017)
- SGRs & AXPs

Simulations by R. Taverna and R. Turolla

Pulsars

- Ultraluminous X-ray pulsars
 - 3 known objects
 - M82 X-2 (Bachetti et al. 2014) crowded region
 - NGC 7793 P13 (Israel et al. 2016; Furst et al. 2016)
 - NGC 5907 ULX-1 (10⁴¹ erg s⁻¹; Israel et al. 2016)
 - Why they can break the Eddington limit by a factor of ~500
 - Sinusoidal modulation no strong beaming
 - Large variability and bimodal luminosity distribution propeller effect
- highly magnetized neutron stars (e.g., Dall'Osso, Perna & Stella 2015; Eksi et al. 2015; Mushtukov et al. 2015; Tsygankov et al. 2016)
- low magnetic neutron stars (Kluzniak & Lasota 2015)

Exploration of the new window - since 1960s

First attempt: 1968 Scattering polarimeter Aerobee 150

WEISSKOPF ET AL.

First precise measurement: 1975 Bragg polarimeter, OSO-8 $P = 19.2\% \pm 1.0\%$ $\psi = 156.4^{\circ} \pm 1.4^{\circ}$ Weisskopf et al. 1976, 1978

First detection: 1971

Bragg polarimeter Aerobee 350 Crab nebula $P = 15.4\% \pm 5.2\%$

NASA SMEX - IXPE

• 100 times more sensitive than the polarimeter on OSO-8

Sensitivity of IXPE

Figure 10—IXPE polarization sensitivity. The plot displays the integration time (in days) to reach a given MDP_{99%}, as a function of 2–8-keV source flux (in 10^{-11} ergs cm⁻² s⁻¹). See text for details.

40 targets within 6-month discovery phase: 4 PWNe, 4 other pulsars, 12 LMXBs, 6 HMXBs, 8 blazars, and 6 other AGNs.

(Weisskopf et al. 2008)

Why do we need polarimetry for eXTP?

- X-ray polarimetry is NOT a one-time science experiment.
- Imaging
 - Einstein \rightarrow Chandra
- Timing
 - − Ginga → XTE → LOFT & eXTP
- Gravitational wave
 - First detection \rightarrow GW astronomy
- BeppoSAX
 - A smart design and successful operation
- eXTP must be more powerful than IXPE or properly designed

eXTP polarimetry - the current design

Payload	Configuration	
Spectroscopic Focusing Array	11 sets/SGO/SDD element	COVER
Polarimeteric Focusing Array	2 sets/Nickel based optics/GPD	聚焦光学 X-ray optics
Large Area Detector	40 modules/Pb glass/SDD	
Wide Field Monitor	3 units/1.5D coded mask/SDD	

FPD

PFA optics

Focal length	4.5 m
Effective area	>800 cm ² @2 keV (collecting area)
Field of View	12 arcmin
Angular res	<30" (goal 15") HPD

PFA detector: gas pixel detector (GPD)

Gas	Density (g cm ⁻³)	Average ionization energy (eV)	Auger electron energy (eV)	Transversal diffusion coefficient (µm cm ^{-0.5})
He	0.178	41	-	520
Ne	0.900	36.3	849	600
CO ₂	1.963	33	277/525	75
$DME(C_2H_6O)$	2.055	23.9	277/525	65
CH_4	0.716	28	277	220

The gain with CO₂ is one order of magnitude smaller than with DME

Modulation

Effective area and quality factor

Upper limit 0.8% (99% C.L.) or 0.6% (90% C.L.)

Without a P = $\pi/2$ component	With a P = $\pi/2$ component
χ2/dof = 118.93/97	χ2/dof = 85.0/95
DoM = 0.091%	DoM = 0.090%
99% DoM upper limit = 0.43%	99% DoM upper limit = 0.43%
μ = 0.54	μ = 0.54
99% DoP upper limit = 0.80%	99% DoP upper limit = 0.80%

eXTP vs. XIPE vs. IXPE

 5x larger than IXPE in effective area – it is possible! by increasing the PFA unit numbers or focal lengths

Area (cm²)	eXTP	XIPE	IXPE
3 keV	248	195	101
4 keV	114	86	52

- What are the primary targets for eXTP?
- How polarization can help constrain their physical nature?

Other possible channels for exploration

- Current detector
 - GPD filled with 0.8 atm DME
 - Sensitive in 2-8 keV, peaked at 3-4 keV
- Possible extensions
 - Hard X-ray polarimetry
 - Filled with Ar ($E_{Auger} \sim 3.0 \text{ keV}$), sensitive in 10-20 keV
 - Soft X-ray polarimetry
 - Multilayer Bragg reflection polarimeter
 - Sensitive around 0.25 keV

Hard X-ray polarimetry

Preliminary simulations & tests

✓ Gas mixture: Ar(60%) + DME(40%)
✓ Pressure: 3 bar
✓ Depth: 3 cm

Muleri et al. (2006), Fabiani et al. (2012)

Soft X-ray polarimetry

- Reflecting Multilayer Bragg polarimeters
 - A student project for GEMS
 - a beam splitter above the focal plane
 - Grating + energy dependent (Marshall's talk)
 - Difficult if thermal film is used
 - OSO-8 like focusing polarimeter at 250 eV
 - LAMP concept, compact but with a total collecting area of 1300 cm²

- We need to define the science requirement for PFA
 - Current discussions of the science cases are mostly about the *discovery sciences*; we need to discuss sciences that requires deeper polarimetric observations
 - Sciences with PFA should be in line with that with SFA
- A significant step beyond IXPE is expected!

Thank You!