

Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

Ferrigno, C. Bozzo, E. Sanna, A. Pintore, F. Papitto, A. Riggio, A. Burderi, L. Di Salvo, T. Iaria, R. D'Aì, A.

The context

 Accretion of material brings angular momentum and spins-up the pulsar.

The growing family of UNIVERSITÉ SDCAccreting MilliSecond Pulsar DE GENÈVE

Name	P _{Spin} [ms]	P _{Orb} [min]	M _{C,Min} [M _{sol}]	Discovered
SAX J1808.4-3658	2.5	120	0.043	Apr. 1998
XTE J1751-306	2.3	42	0.014	Apr. 2002
XTE J0929-314	5.4	44	0.083	Apr. 2002
XTE J1807-294	5.2	40	0.0066	Feb. 2003
XTE J1814-338	3.2	258	0.17	Jun. 2003
IGR J00291+5934	1.67	150	0.039	Dec. 2004
HETE J1900.1-2455	2.6	84	0.016	Jun. 2005
Swift J1756.9-2508	5.5	54	0.007	Jun. 2007
NGC 6440 X-2	4.86	57	0.0067	Aug. 2009
IGR J17511-3057	4.1	208	0.13	Sep. 2009
Swift J1749.4-2807	1.9	530	0.6	Apr. 2010
IGR J17498-2921	2.5	230.4	0.17	Aug 2011
IGR J18245-2452	3.9	661.5	0.17	March 2013
MAXI J0911-655	2.9	44.3	0.024	February 2016

+ 2 Intermittent pulsars: Aql X-1 and SAX J1748.9-2021

eXTP meeting 07.02.2017

- Fastest AMSP: 600 Hz (fastest pulsar 716 Hz, Hessels et al. 2006)
- Compact binary, similar to SAX J1808.4 companion mass 0.04-0.16 M_{sol}
- Measured spin-up in accretion phase (8.4 10⁻¹³ Hz/s, Falanga et al, 2005)
- Zero orbital period derivative, limit compatible with Gravitational Wave emission (Patruno et al., 2016)
- A Type-C QPO was found in 2004 outburst (Linares et al. 2007). Frequency at 44 mHz with hard spectrum.
- In 2015 (outburst studied here), a Thermonuclear burst was detected for the first time with Swift (De Falco et al., 2016). This is the brightest of the source outbursts.
- Distance estimate (4 kpc, De Falco et al., 2016).

Light curveSDCand Hardness ratio

IGR J00291+5934

CPower density spectrum

- 0.5 -11 keV XMM EPIC-pn
- Four broad Lorentzians and one QPO: f=8 mHz Q=9 rms=15%

CENERGY-resolved analysis

- Divided in 12 energy bins with equal number of photons.
- Frequency at 8.5 mHz
- A very soft QPO !
- Rather high Qfactor

eXTP meeting 07.02.2017

Zoomed light curve

• At low luminosity, sometimes hard, sometimes soft.

Hardness-resolved spectra

- As for the average spectrum (Sanna et al. 2017), we use (Tbabs *(nthComp (kT_s= 1, kT_e = 28 keV + BlackBody (0.5 keV))
- We exploit the hardness to guess the origin of variability.
- Softening due to additional black-body and lower seed-photon temperature in Comptonization. Almost equal power-law slope.

QPO-resolved spectroscopy

Lags at QPO frequency

- Reconstruct energydependent QPO front from rms and lag (1.5% systematic).
- Black Body (both T and R) drives variability

 $ms = \mu(E) \left(1 + \sqrt{2\sigma_1} \cos \left[\phi - \Phi_1(E) \right] \right).$ mean spectrum lag

Figure 1. Left panel: A 3D view of the funnel flow from the disc to a magnetized star, where the dipole moment μ is tilted by $\Theta = 20^{\circ}$ about the rotational axis. One of the density levels is shown in green; sample field lines are shown in red. *Right panel:* the energy flux distribution on the

Pulse profile

0.3-10 keV

• Nearly sinusoidal. Only one pole is probably seen.

- Take a time series of *fractional* amplitudes of the 600 Hz spin, measured every ten seconds.
- Make a Power density spectrum. QPO ! Same energy dependency.

- Strong and Soft QPO at 8 mHz
- Driven mainly by a soft spectral Component, identified as a black body with a few km radius and ~0.5 keV temperature
- Fractional pulsed amplitude is modulated by a QPO
- Is it a phenomenon inherent to the accretion flow or is it linked to thermonuclear burning, or is it due to absorption ?
- Absorption is irrelevant, as showed by spectra resolved in hardness or QPO phase

Parameter	HR>4	HR<2
$N_{\rm H}~(10^{22}~{\rm cm}^{-2})$	$0.35 {\pm} 0.02$	$0.31\substack{+0.03 \\ -0.05}$

Thermonuclear bursts

 Material accumulated on the NS surface undergoes catastrophic nuclear burning and the object becomes very bright.

Regular bursts

- IGR J17480-2446 (Terzan 5) transitioned from Atoll to Z-states. Becoming extremely bright, the Thermonuclear bursts became quasi periodic flares with recurrence of ~300 s.
- Our source is dimmer, spectrum is NOT BB dominated, LC is more "dipping" than flaring

C Marginally stable burning

- 4U 1636-53 shows QPO at 8 mHz with a very soft spectrum, interrupted by thermonuclear bursts. Discovered in 2001 by Revnivtsev
- Spectrum has a strong BB with kT~2 keV
- Only in a (broad) range of luminosity

UNIVERSITÉ

DE GENÈVE

Modeling

- It requires a high (Eddington) and very narrow range of mass accretion rate (1%). Obs. show a range of 50%.
- To lower luminosity, it is argued that burning take place in a narrow equatorial zone. Heger (2007). Ashes of H burning.

NGC 6440 X-2 is a transient accreting millisecond pulsar with a 4.86 ms spin period and 57 min orbit

- Strong semi-period modulation at a frequency of ~1 Hz.
- PSD fitted with 3 harmonic Gaussians (1 Hz) + Lorentzian (10 Hz QPO)
- Similar to SAX J1808.4-3658

Cyclic accretion

- Matter accumulates and then is accreted in cyclic fashion
- Contemporary ejections of material
- Much lower time scale (10³ lower)

A similar QPO in BH

- A very similar signature in the power spectrum of the black-hole binary H1743– 322 was found in the 2010-2011 outburst using Chandra.
- They argue it is similar to the 1 Hz QPO seen in neutron star and interpreted as the movement of the disc in and out of the coronation radius.
- QPOs are harder (seen in RXTE above ~3 keV) and variable in frequency.

eXTP meeting 07.02.2017

- Found a very pronounced variability in the XMM-Newton observation of IGR J00291, reflected in the presence of a soft QPO (<3 keV, below RXTE band but in eXTP energy range!).
- This variability resembles the QPOs in 4U 1608-52, 4U1636-536, and Aql X-1, interpreted as *marginally stable nuclear burning*. However, only one thermonuclear burst in IGR J00291 history and well apart both in flux and time from the QPO.
- Variability is reflected in the pulsed fraction: shape of accretion driven emission region? Change of the surface thermonuclear emission pattern leading to a modulation in pulsed fraction?
- Possibility that it is an accretion-flow mediated modulation of the accretion rate as in H1743–322 (or GRS 1915+105). However, why would it be so soft?
- Multi-Messenger eXTP data will solve these degeneracies.