The X-ray polarization of reprocessed emission in black hole systems

René W. Goosmann Observatoire astronomique de Strasbourg

Observational challenges leading to an ambitious modeling effort...

On the way to a full understanding of accretion – combining radiative transfer with (GR-)MHD

Missing element:

We need an onthe-spot reprocessing to be coupled to a Monte-Carlo radiative transfer method.

Blaes, Hirose & Krolik (2007), Hirose, Krolik & Stone (2006)

On the way to a full understanding of accretion – combining radiative transfer with (GR-)MHD

Missing element:

We need an onthe-spot reprocessing to be coupled to a Monte-Carlo radiative transfer method.

What is the reprocessed spectrum from this cell ?

Schnittman & Krolik (2013)

Example: modeling the radiative coupling between the disk and the corona

Inspiration by the work of Malzac, Dumont & Mouchet (2004) for AGN

Inspired by this approach, can we construct a more general and versatile model?

The polarization of reprocessed emission – basic notions

Coherent, strongly polarized emission as expected from synchrotron radiation produced in a highly-ordered magnetic field. Incoherent, weakly polarized radiation produced by superposition of incoherent sources, such as turbulent magnetic fields emitting synchrotron emission. Polarization mechanisms in the X-ray range – scattering-induced polarization

[Synchrotron emission]

Electron scattering

Dust (Mie) scattering

Resonant line scattering

Dichroic absorption

Dilution (by unpolarized radiation)

[General Relativity]

Weak polarization:

Scattering

[Birefringence in strong *B*-fields]

Rotation of the polarization vector when transported through a strong gravity field. $\mathbb{R}_{\mathbb{R}}$

dS

distant observer

Applying relativistic ray-tracing methods in Kerr metric. Again, it is important to quantify the local polarization.

see e.g.

Connors, Piran, Stark (1980) Dovčiak et al. 2004 Schnittman, Krolik 2009 Dauser et al. 2013

I, Q, U, V dS_{e} dccretion disk $\Delta N_{o}^{\Omega_{o}}(E, \Delta E, t) = \int_{r_{i}}^{r_{o}} dr \int_{\Phi}^{\Phi + \Delta \Phi} d \Phi \int_{E/g}^{(E + \Delta E)/g} dE_{I} N_{I}(E_{I}, r, \Phi, \mu_{e}, t - \Delta t) g^{2} I \mu_{e} r.$ dS_{e} dS_{e}

What already nowadays and for sure(!) future observers would like theorists to do...

Constructing a self-consistent model that provides:

- high-resolution spectra (~very few eVs at 1 keV),
- timing information,
- (linear) polarization results

for the coupled radiative transfer between

- various emitting and reprocessing media
- of arbitrary geometry,
- taking into account all angular dependencies,
- covering a range of ionization strengths / temperatures.

Lorentz Center International center for scientific workshops

hautes énergies

national

Programme

Applying two radiative transfer codes

Monte-Carlo radiative transfer method STOKES (Goosmann & Gaskell 2007, Marin et al. 2012)

- reprocessed spectrum
- polarization spectrum
- time lag spectrum
- assuming a thin disk

Radiative transfer code TITAN (Dumont 2000, 2003)

- constant density slab
- given ionization parameter $\xi = 4\pi F/n$
- solving radiative transfer, temperature and ionization profile using ALI method

Spot light on the azimuthal flux dependence of X-ray reprocessing ⁹⁰

State of the art models: Garcia et al. (2013) [XILLVER]

<u>Next challenge:</u> correctly including **all** angular dependencies (see iron line diagnostics of Svoboda et al. 2010) as well as timing and polarization information

Results for an irradiated AGN accretion disk – the *azimuthal* dependence

Results for an irradiated AGN accretion disk – the *polar* dependence

Results for an irradiated AGN accretion disk – the *polar* dependence

Extracting polarization information – factor of 20 in polarization degree between face-on and edge-on

Extracting polarization information – factor of 20 in polarization degree between face-on and edge-on

Where we stand and where we still want to go...

An ambitious model grid for disk reprocessing in AGN and X-ray binaries (for the latter with underlying disk heating included):

Parameter space to be cover:

- Ionization parameter: 50 erg cm/s < ξ 5000 erg cm/s
- Spectral slope: $1.0 < \Gamma < 3.0$
- Disk temperatures in X-ray binaries (0.2 2 keV)
- Element (iron) abundance 0.1 < A < 10 solar
- 40 incident and 72 local emission angles included

Grid completed for solar abundances: evaluation ongoing for timing and polarization.

Analysis of the reprocessing time currently underway!

Question: what else do you need?