

Sudip Bhattacharyya

Tata Institute of Fundamental Research, Mumbai, India

Integrated AstroSat before launch weight: 1.5 ton

PSLV XL Rocket weight: 320 ton

Courtesy: D. Bhattacharya

University of Leicester

28 September 2015 04:30 UT SHAR, India

AstroSat

650 km, circular 6° inclination period 98 min precession 50 d

General information

Launched into a nearly circular orbit with Altitude: 640 - 650 km; Inclination : 6 deg.

- Orbital period : ~98 minutes;
- Eclipse period : 35 minutes; Sunlit period : 62 minutes
- Orientation by 4 reaction wheels and 3 magnetic torquers (capacity: 60 A m²) + inputs from 3 dual gimbal gyros, 2 star sensors and 2 magnetometers.
- Pointing accuracy of ~1 arcsec with star sensors.
- Drift rate is expected to be 0.2 arcsec/s.
- Maximum slew rate will be 0.6°/s.
- Solid-state recorder with 200 Gb storage (4 orbits).
- Operational life of > 5 years

ASTROSAT – Payload Instruments

- Large Area X-Ray Proportional Counter (LAXPC) [TIFR]
- Soft X-ray Telescope (SXT) [TIFR+UoL+ISRO]
- Cadmium Zinc Telluride Imager
 (CZTI) [TIFR+IUCAA +ISRO]
- O Ultra Violet Imaging Telescope (UVIT)
 [IIA+ISRO+CSA+IUCAA+TIFR]
- Scanning Sky Monitor (SSM) [ISRO]

Courtesy: K.S. Sarma

Key features of AstroSat

- Built for Timing: individual photon recording in all bands, time resolution 10µs - 100ms
- Simultaneous broadband (~2 eV 100 keV)
- Capability to handle high count rate in X-rays
- Hard X-ray polarisation
- Good imaging resolution at Ultraviolet bands

LAXPC

Three LAXPC units before launch

Courtesy: K.S. Sarma

LAXPC properties

- 1. No. of LAXPC Detectors: Three (3) "Identical" units
- 2. Detector size: 120 cm x 50 cm x 70 cm
- 3. X-ray detection volume: 100 cm x 36 cm x 15 cm
- 4. No. of anode layers: 5 anode layers : each has 12 anode cells
- 5. Collimator field of view: 1° X 1° for all the LAXPCs
- 6. Counting Gas: Xenon + Methane (Two atmosphere)
- 7. Energy range: 3-80 keV
- 8. Total Effective Area of 3 LAXPCs: About 8000 cm² in 5-20 keV
- 9. Energy resolution: 12% at 22 keV
- **10. Time resolution: 10 μs**

LAXPC modes

1. Normal (or Default) Modes of Operation :

In Normal operation there are two modes running simultaneously and data are acquired from each LAXPC.

(a) **Broad Band Counting Data:** Records the rate of occurrence of events in various energy bands with selectable time Bin (16 msec to 2048 msec). Default value is 128 msec.

(b) Event Mode Data: In this mode arrival time of each event is time tagged to an accuracy of 10 microseconds. Simultaneously the energy and identity of each event is also recorded. This mode generates 5 bytes data for each accepted and analyzed event. In this mode the dead time of the detector is around 42 microseconds.

2. Fast Counter Mode:

In this mode the event rate is measured only from the top layer of each LAXPC detector in 4 energy channels covering 3-20 keV band with a fixed time bin of 160 microsecond. In this mode dead time is about 10 microsecond. Each of 4 counters are 8 bit deep and cover 3-6, 6-8, 8-12 and 12-20 keV energy bands. This mode is to be used for studying rapid variability during the short duration flares or outbursts of sources.

AstroSat and RXTE/PCA

Courtesy: LAXPC team

Courtesy: LAXPC team

AstroSat/LAXPC study of GRS 1915+105 (a transient black hole binary) in very high state (SPL state)

YADAV ET AL.

Yadav et al., 2016, Astrophysical Journal, 833, 27

AstroSat/LAXPC study of Cyg X-1 (a persistent black hole binary) in low hard (LH) state

Misra et al., 2016 Astrophysical Journal in press (arXiv:1612.08793)

AstroSat/LAXPC study of the NS LMXB 4U 1728-34

KHz Quasi-periodic Oscillations (KHz QPOs) :

Figure below shows dynamic power density Spectrum from LAXPC observation of 4U 1728-34. About 815 Hz QPOs were observed, which drifted to around 850 Hz by the end of the observation.

Jai Verdhan et al 2017

Courtesy: J S Yadav

SXT: Optics + CCD based FPCA(~65 Kg)

ASTROSAT

Performance Parameters of the scientific Instruments

	UVIT	SXT	LAXPC	CZTI	SSM
Detector	Intensified CMOS, used in photon counting mode or integration mode	X-ray (MOS) CCD at the focal plane. (XMM & Swift heritage)	Proportional counter	CdZnTe detector array	Position- sensitive proportional counter
Imaging / non- imaging	Imaging	Imaging	Non-imaging	Imaging	Imaging
Optics	Twin Ritchey- Chretian 2 mirror system.	Conical foils (~Wolter-I) mirrors. 2-m focal length	Collimator	2- D coded mask	1- D coded mask
Bandwidth	1300-5500 Angstroms	0.3 - 8 keV	3 - 80 keV	10 - 100 keV	2.5 - 10 keV
Geometric Area (cm2)	~1100	~250	10800	1024	~180
Effective Area (cm2)	8 - 50 (depends on filter)	~128@1.5 keV ~22@6 keV	8000@5-20 keV	1000 (E>10 keV)	~11 @ 2 keV ~53 @ 5 keV
Field of View (FWHM)	28' dia	~ 40' dia	1º x 1º	6º x 6º	10º x 90º
Energy Resolution	<1000 A (depends on filter)	~5-6%@1.5 keV ~2.5%@6keV	12%@22 keV	5% at 100 keV	25% @ 6 keV
Angular Resolution	1.8 arcsec (FUV,NUV) 2.2 arcsec (Vis)	~2 arcmin (HPD)	~(1-5) arcmin (in scan mode only)	8 arcmin	~12 arcmin
Time resolution	1.7 ms	2.4 s, 278 ms	10 μs	1 ms	1 ms
Typical observation time per target	30 min	0.5 - 1 day	1 - 2 days	2 days	10 min
Sensitivity (Obs. Time)	Mag. 20 (5σ) 200 s (130-180 nm)	~10 ⁻¹³ ergs cm ⁻² s ⁻¹ (5 σ) (20000 s)	0.1 milliCrab (3σ) (1000 s)	0.5 milliCrab (3ơ) (1000s)	~28 milliCrab (3 <i>o</i>) (600s)

Readout Modes of the CCD

- (1) Photon Counting Mode (PC), [The Default Mode includes the calibration sources]
- (2) Photon Counting Window Mode (PCW) 5 pre-defined windows recommended
- (3) Fast Window Mode (FW),
- (4) Bias Map Mode (BM), and
- (5) Calibration Mode (CM).
- •X-ray spectral information available in all the modes.
- •Time resolution in the PC, PCW, CM modes is 2.4 s, and 0.278 s in the FW mode.
- •FW reads only the central 150 x 150 pixels of the CCD.
- •For observing very strong cosmic sources, FW mode is recommended.

SXT FM: Electronics: NIM:A (2009), 604,747; Energy Calibration spectrum measured using internal sources: Single Pix events; CCD @ -82+/-2 C

SXT FIRST LIGHT

- Telescope (Optics)
 Door opening Oct
 15th
- Camera Door
 Opening Oct 26th
 @ 06:30 UT
- First Light Oct
 26th

Pointed at and observed- PKS2155-304 (Quasar) at redshift of 0.116

Courtesy: K.P. Singh

Right ascension

Tycho SNR; SXT Exp. Time=13000 s

SXT + *LAXPC spectrum:* Mrk 501

sanket 9-Jan-2017 15:11

Cadmium Zinc Telluride Imager (CZTI)

Area: 976 cm²

Pixels: 16384 (64 modules of 256 pixels each) Pixel size 2.46 mm X 2.46 mm (5 mm thick)

Imaging method Coded Aperture Mask (CAM)

Field of View (10-100 keV): 4.6° X 4.6° FWHM (primary FOV) 11.8° X 11.8° FWZM (incl. illumination leakage)

Angular resolution ~ 8 arcmin Energy resolution ~ 8% @ 100 keV Energy range: 10 – 100 keV

Up to 1 MeV (Photometric); no imaging above 100 keV

Sensitivity: 0.5 mCrab (5 sigma; 10⁴ s)

CZTI image of Crab

Declination

Right ascension

Courtesy: A.R. Rao, D.Bhattacharyya, S. Vadawale

Instrument Performance: CZTI

- Crab spin down (36 ns/day) detected clearly in one day observation
- X-ray pulse known to lead radio pulse by ~300 µs (Integral)
- CZTI pulse leads radio by ~490±150 µs
- Absolute time accuracy: ~200 µs

Vadawale et al. 2016a; Rao 2016

Pulse profile

Polarisation fraction and angle of Crab nebula and pulsar measured by CZT Imager.

- (a) The polarisation fraction and
- (b) polarisation angle.

Representative modulation curves are shown in the insets.

(c) The modulation curve obtained by co-adding all observations (550 ks.)
fraction is 33.4% ± 5.8%
and polarisation angle is 143.0° ± 2.8° NE
(e) & (f) Confidence contours

SCANNING SKY MONITOR (SSM) ABOARD ASTROSAT To detect and locate X-ray transients

ISRO/IUCAA

ASTROSAT

Performance Parameters of the scientific Instruments

	UVIT	SXT	LAXPC	CZTI	SSM
Detector	Intensified CMOS, used in photon counting mode or integration mode	X-ray (MOS) CCD at the focal plane. (XMM & Swift heritage)	Proportional counter	CdZnTe detector array	Position- sensitive proportional counter
Imaging / non- imaging	Imaging	Imaging	Non-imaging	Imaging	Imaging
Optics	Twin Ritchey- Chretian 2 mirror system.	Conical foils (~Wolter-I) mirrors. 2-m focal length	Collimator	2- D coded mask	1- D coded mask
Bandwidth	1300-5500 Angstroms	0.3 - 8 keV	3 - 80 keV	10 - 100 keV	2.5 - 10 keV
Geometric Area (cm2)	~1100	~250	10800	1024	~180
Effective Area (cm2)	8 - 50 (depends on filter)	~128@1.5 keV ~22@6 keV	8000@5-20 keV	1000 (E>10 keV)	~11 @ 2 keV ~53 @ 5 keV
Field of View (FWHM)	28' dia	~ 40' dia	1º x 1º	6º x 6º	10º x 90º
Energy Resolution	<1000 A (depends on filter)	~5-6%@1.5 keV ~2.5%@6keV	12%@22 keV	5% at 100 keV	25% @ 6 keV
Angular Resolution	1.8 arcsec (FUV,NUV) 2.2 arcsec (Vis)	~2 arcmin (HPD)	~(1-5) arcmin (in scan mode only)	8 arcmin	~12 arcmin
Time resolution	1.7 ms	2.4 s, 278 ms	10 μs	1 ms	1 ms
Typical observation time per target	30 min	0.5 - 1 day	1 - 2 days	2 days	10 min
Sensitivity (Obs. Time)	Mag. 20 (5σ) 200 s (130-180 nm)	~10 ⁻¹³ ergs cm ⁻² s ⁻¹ (5 σ) (20000 s)	0.1 milliCrab (3σ) (1000 s)	0.5 milliCrab (3σ) (1000s)	~28 milliCrab (3 σ) (600s)

SSM – GRS 1915+105

Black Hole source Observations; Oct 15, 2015

ASTROSAT FirstLight of Black Hole GRS 1915+105 (β Class)

Astronomer's Telegram ATel#8185 generated on the above detection of variability in GRS 1915+105

Courtesy: Ramadevi

SSM Observations of a Be X-ray pulsar 4U0115+63 in its outburst

PULSE PERIOD DETECTION IN BINARY PULSAR 4U0115+634

Courtesy: Ramadevi

CONFIGURATION OF UVIT IN ASTROSAT

UVIT primarily is an imaging instrument. made Images are simultaneously in three channels: FUV (130-180 nm), NUV (200-300 nm), and VIS (320-550 nm), in a field ~ 28' circle. The spatial resolution (FWHM) is < 1.8'' for the FUV and NUV channels, and it is ~ 2.2" for the VIS channel. In each channel, a set of filters are available, in the filter-wheels, for selecting In the two band. a ultraviolet channels, gratings are provided for low resolution (~ 100) spectroscopy.

ASTROSAT

Performance Parameters of the scientific Instruments

UVIT SXT LAXPC CZTI SSM Intensified CMOS. X-ray (MOS) CCD CdZnTe Proportional Position-Detector used in photon at the focal plane. sensitive counter detector array counting mode or (XMM & Swift proportional integration mode heritage) counter Imaging / non-Non-imaging Imaging Imaging Imaging Imaging imaging Conical foils Collimator 2- D coded 1- D coded Twin Ritchey-Optics Chretian 2 mirror mask (~Wolter-I) mirrors. mask 2-m focal length system. 1300-5500 0.3 - 8 keV 3 - 80 keV 10 - 100 keV 2.5 - 10 keV Bandwidth Angstroms ~1100 ~250 10800 1024 ~180 **Geometric Area** (cm2) 8 - 50 (depends ~128@1.5 keV 8000@5-20 1000 (E>10 ~11 @ 2 keV **Effective Area** ~22@6 keV keV ~53 @ 5 keV on filter) keV) (cm2) 6⁰ x 6⁰ 28' dia 1⁰ x 1⁰ 10[°] x 90[°] **Field of View** ~ 40' dia (FWHM) <1000 A 25% @ 6 keV 12%@22 keV 5% at 100 Energy ~5-6%@1.5 (depends on filter) keV keV Resolution ~2.5%@6keV 1.8 arcsec ~(1-5) arcmin ~12 arcmin Angular 8 arcmin ~2 arcmin (FUV,NUV) (in scan (HPD) Resolution 2.2 arcsec (Vis) mode only) 2.4 s, 278 ms 1.7 ms 1 ms 1 ms **Time resolution** 10 µs 0.5 - 1 day 10 min 30 min 1 - 2 days 2 days Typical observation time per target ~28 milliCrab ~10⁻¹³ ergs cm⁻² 0.1 milliCrab 0.5 milliCrab Sensitivity Mag. 20 (5σ) S-1 200 s (Obs. Time) (3 σ) (3 σ) (3 σ) (5 σ) (20000 s) (130-180 nm) (1000 s) (1000s) (600s)

Image of NGC 2336: a comparison

UVIT NUV image

Right: colour ground-based image

Courtesy: S.N. Tandon

ASTROSAT observation plan

0-6 months (~ Oct. 2015 – Mar. 2016): Performance Verification

6-12 months (~ Apr. 2016 – Sep. 2016): Guaranteed Time Observations (GTO)

Year 2 (~ Oct. 2016 – Sep. 2017): AO: Indian PIs: 35% and GTO: 50%

Year 3 (~ Oct. 2017 – Sep. 2018): AO: Indian PIs: 45%, Other PIs: 10% and GTO: 30%

Year 4 (~ Oct. 2018 – Sep. 2019): AO: Indian PIs: 65% and Other PIs: 20%

From Year 2: CSA: 5%, Leicester: 3%, ToO: 5% Throughout the mission: Calibration: 2%

ASTROSAT observation plan

0-6 months (~ Oct. 2015 – Mar. 2016): Performance Verification

6-12 months (~ Apr. 2016 – Sep. 2016): Guaranteed Time Observations (GTO)

Year 2 (~ Oct. 2016 – Sep. 2017): AO: Indian PIs: 35% and GTO: 50%

Year 3 (~ Oct. 2017 – Sep. 2018): AO: Indian PIs: 45%, Other PIs: 10% and GTO: 30%

Year 4 (~ Oct. 2018 – Sep. 2019): AO: Indian PIs: 65% and Other PIs: 20%

From Year 2: CSA: 5%, Leicester: 3%, ToO: 5% Throughout the mission: Calibration: 2%