Development of SFA optics and focusing system

Qiushi Huang, Zhenxiang Shen, Bin Ma, ZhongZhang, Kun Wang, Hongfei Jiao, Xiaoqiang Wang, Zhanshan Wang

Key Laboratory of Advanced Micro-Structured Materials MOE Institute of Precision Optics and Engineering (IPOE) Tongji University

SFA modules for eXTP

- E= 0.5-10keV
- f=4.5m, φ=100-450mm
- N=176

Angular reso. =1 arcmin

Development process for X-ray telescope

Optical design

Hot Slumping glass

Coating

1st prototype in March, 2016

F=4m Ø=170mm 5 shells 60 mirrors primary+secondary Pt coating 0.3 mm thickness

National Astronomical Observatory of China

1st prototype in March, 2016

Pencil beam measurement HPD =~ 3'

Optical design Slumping glass Coatings Assembly

Coating design for 1-10keV

Pt, C layers $\theta = 0.16^{\circ}0.71 \text{deg}$

N=176 Ø=100mm~450mm f=4.5m Mirror length= 100mm

Focal spot off axis

Stray light

Incident beam reflected by only primary or secondary mirror:

Optical design Slumping glass Coatings Assembly

Slumping glass optics (SGO)

Improved mandrel

Improved slumping process

Measure and reduce surface contamination

New slumping results

New slumping results

Cylindrical Magnetron Sputtering Coater for eXTP

Deposition on slumping glass, or deposition on cylindrical glass mandrel

Grazing incidence X-ray measurement

Roughness & stress measurement

Optical design Slumping glass Coatings Assembly

Assembly and Integration of telescope

Integration method

The tilt spindle combined with dish wheel to grind the conic surface

Development of ray-tracing program

• The ideal surface figure

Reconstruction of surface figure
of the telescope prototype

Evaluation of the optics performance with metrology data

The calculated HPD performance of each mirror using the ray-tracing program with the measurement data.

Evaluation of the prototype performance

Simulated focusing performance of the prototype is 162 arcsec. Consistent with the measured result.

Evaluation of assembly error

Average assembly error is ~99.6", need to decrease to 40".

To achieve 1 arcmin ...

Conclusion

1st prototype HPD=~3'

Institute of Precision Optical Engineering

Thank you for your attention !

