HXMT: the Hard X-ray Modulation Telescope mission POLAR: the GRB polarimeter onboard China's Tiang-Gong 2 Spacelab

Shuang-Nan Zhang (张双南) zhangsn@ihep.ac.cn

Institute of High Energy Physics National Astronomical Observatories of China Chinese Academy of Sciences

Hard X-ray Modulation Telescope (HXMT) satellite

- China's 1st X-ray astronomy satellite
- Selected in 2011
- Total weight ~2500 kg
- Cir. Orbit 550 km, incl. 43°
- Pointed, scanning and GRB modes
- Designed lifetime 4 yrs
- Launch in June 2017

HXMT core sciences

- Galactic plan scan and monitor survey: finding more weak short transients at hard X-rays
- 2. Pointed observations: high statistics observations of bright sources and high cadence XRB outbursts
- 3. GRB observations: up to 3 MeV with large area
- 4. Multi-wavelength observations

HXMT Payloads

Medium (ME): Si-PIN,5-30 keV, 952 cm²

High Energy (HE): Normal Mode Nal, 20-250 keV, ~5000 cm²

Csl, 50-700 keV, ~5000 cm²

High Energy (HE): GRB Mode

Nal, 100-300 keV, 5000 cm²

Csl, 250-3000 keV, 5000 cm²

Main characteristics of the HXMT Mission

Detectors	LE: SCD, 384 cm ² ;ME : Si-PIN, 952 cm ² HE : Nal/CsI, 5000 cm ²	
Energy Range	LE: 1-15 keV;ME: 5-30 keV;HE: 20-250 keV GRB mode: 200-3000 keV	
Time Resolution	HE: 25µs; ME: 20µs;LE: 1ms	
Energy Resolution	LE: 2.5% @ 6 keV ME: 8% @ 17.8 keV HE: 19% @ 60 keV	
Field of View of one module	LE: $6^{\circ} \times 1.5^{\circ}$; $6^{\circ} \times 4^{\circ}$; $60^{\circ} \times 3^{\circ}$; blind; ME: $4^{\circ} \times 1^{\circ}$; $4^{\circ} \times 4^{\circ}$; blind; HE: $5.7^{\circ} \times 1.1^{\circ}$; $5.7^{\circ} \times 5.7^{\circ}$; blind	
Source Location	<1' (20σ source)	

HXMT Sensitivity: pointed observation

Two modes of HXMT/HE

Effective areaFront incidentBack incident

HXMT's GRB capability comparison

Expected HXMT GRB detection rates

Significance (sigma)	GRB mode		Normal mode	
	(GRBs/year)		(GRBs/year)	
	Front	Back	Front	Back
5	70	130	85	145
10	40	110	50	135
20	20	80	25	115

About 200 GRBs per year > 5 sigma

1st yr observation program: July, 2017

Right Ascension

From HXMT AO-1: Regular; ToO; scanning

The Milky Way is highly variable in X-ray eyes!

 HXMT scanning survey of the Milky Way
 Repeatedly scanning the whole Milky Way, to discover new variable black holes and neutron stars, and monitor activities of the known X-ray sources

Collaborations of POLAR

GRB Models and Polarization

Summary of the current GBR polarization measurements

GRB	Instru/Satellites	Pol degree(%)	Energy range(keV)	Comments
110721A	GAP/IKAROS	84_{-28}^{+16}	70-300	<code>@3.3 σ , with constant pol direction</code>
110301A	GAP/IKAROS	70 ± 22	70-300	@3.7 σ , with constant pol direction
100826A	GAP/IKAROS	27 ± 11	70-300	@2.9 σ , with inconstant pol direction
021206	RHESSI	$80\pm20;\ 41^{+57}_{-44}$	150-2000	With large systematic error
140206A	IBIS/INTEGRAL	>48	200-400	Unable to restrict GRB model
061122	IBIS/INTEGRAL	>60; >65; >52	250-800; 250-350; 350-800	Unable to restrict GRB model
041219A	IBIS/INTEGRAL IBIS/INTEGRAL SPI/INTEGRAL	<4; 43 \pm 25; 98 \pm 33	200-800; 200-800; 100-350	With variable pol direction
960924	BATSE/CGRO	>50	20-1000	Unable to restrict GRB model
930131	BATSE/CGRO	>35	20-1000	Unable to restrict GRB model

Design of POLAR detector

• Main scientific goals

- Measure the polarization of the GRB prompt emissions as well as Solar flare emissions, to confirm or restrict the radiation models
- In 2 years of flight lifetime, be able to measure ~ 100 GRBs, contributing to the largest GRB prompt emission polarization observation database
- For the GRBs with fluence higher than 10⁻⁵ erg cm⁻², the Minimum Detectable Polarization (MDP) of POLAR can reach down to < 10%

17/38

Detection principle of POLAR

Monte-Carlo Simulations – Minimum detectable polarization

$$MDP = \frac{n_{\sigma}}{S_F \mu_{100} \epsilon A} \sqrt{\frac{S_F \epsilon A + B}{T}}$$

Technical properties summary of POLAR

1	Detector material	Plastic scintillator (EJ-248M)	
2	Yearly detectable GRBs	~50	
3	GRB localization accuracy	\leq 5° (Fluence \geq 10 ⁻⁵ erg cm ⁻²)	
4	Detection energy range	$\sim 50 - 500$ keV	
5	Field of view	$\pm 90^{\circ} \times \pm 90^{\circ}$	
6	Modulation factor	40%@200 keV	
8	MDP	$\sim 10\%$ (Fluence _{total} $\geq 3 \times 10^{-5}$ erg cm ⁻²)	
9	Detector geometry area	\sim 550 cm ² (on-axis view)	
10	Mass	OBOX: 27.6 kg, IBOX: 3.52 kg	
11	Size	0BOX: $462 \times 462 \times 268.5 \text{ mm}^3$ IBOX: $247 \times 160 \times 85 \text{ mm}^3$	
12	Maximum power consumption	\leqslant 80 W	
13	Time accuracy(UTC)	± 1 ms	
14	Reliability	0.90 (in 2 years lifetime)	

Calibration with radioactive source

Calibration with low energy X-ray fluorescence

measured data points + 2 calculated data points according to the Gam-HV relations

ESRF beam test in 2015 - introduction

- Facility introduction
 - Beamline: ID11
 - Polarization: 100%
 - Pol direction: horizontal
 - Energy range: 35 ~ 140 keV
 - Beam size: minimum (H×V) $0.2 \times 0.07 \ \mu m^2$, maximum (H×V) 1200×1000 μm^2
 - Initial intensity: ~10⁷ phs/s

Detector positions for different off-axis

ESRF modulation curve

Modulation curve, 140 keV

- 140 keV, on-axis measurement
- Modulation factor
 - 0° polarization: 39.31%
 - 90° polarization: 40.23%
 - \odot Simulated result: ~40%

In-orbit calibration scheme

In-orbit calibration scheme

Result with event selection criteria

Triggering pattern of the 1600 channels

Current status

successfully launched on15th/September
successfully powered-on on 22nd/September
powered-off on 14th/October for docking of TG-2 and Shenzhou-11 spaceship

• powered on again on 18th/November...

Preliminary results: Crab pulsar

Preliminary results: solar flare

Oct. 12, 2016: consistent with RHESSI results

Preliminary results: GRB 20160928A

>90 degree off-axis, not good for polarization

Preliminary results: GRB 20161129A

32/38

Preliminary results: GRB161218B

Raw lightcurve:

GRB time: GPS 1928:30778.0-1928:30806.8 BKG time: GPS 1928:30750-1928:307758:30810-1928:30920

Observation Hit maps

Background off GRB

Total during GRB

Hit map

Simulated GRB hit map

Observed GRB hit map

Efficiency map

Observation/ Simulation

Efficiency statistics

Summary and outlook

⊙HXMT is China's 1st X-ray astronomy satellite: 2017-06. \odot HXMT AO-1 \rightarrow 1st yr observation program available. ⊙1/3 total time in Galactic plane scan and monitoring \odot GRB mode when in Earth shadow or HE not used (~1/2) ⊙Will invite ESA, ASI, MPE, etc., for joint studies. ⊙ POLAR, launched on 2016-09-14, is working as expected. ○ POLAR has detected the Crab pulsar, solar flares and GRBs. ⊙In-orbit calibration is on-going: polarization for solar flares and GRBs are expected for bright events. zhangsn@ihep.ac.cn