Magnetized compact sources: emission mechanisms and future polarization tests

Andrei Beloborodov Columbia University

"Weak" and "strong" magnetic fields

$$\hbar \, \frac{eB}{m_e c} \sim 1 \, \left(\frac{B}{10^{11} \text{ G}} \right) \, \text{keV}$$

$B < 10^{11}$ G :

weakly affects X-ray emission by non-relativistic particles;
 then Compton scattering is most important for polarization.
 local angular distribution of radiation sets polarization

Accreting millisecond pulsars

hot spot: "slab" (rather than column)

nuclear bursts: Chandrasekhar $\Pi_{max} \approx 12\%$ accretion shock: Comptonization

Accretion disks in X-ray binaries

optically thick disk: Chandrasekhar polarization 12% at 90 degrees

corona: optical depth ~1 temperature ~100 keV

simplest example: slab geometry

Comptonization in a hot slab

Haardt, Matt 1993; Poutanen, Svensson 1996

NEW: detection of pair plasma in microquasar V404 Cyg (Siegert et al. 2016)

Radiative magnetic reconnection near black holes

AB 2017

Strong magnetic fields

$\hbar\omega_B > 1 \text{ keV}$

"young" neutron stars

X-ray pulsars

Large scattering optical depth in the column Strong magnetic fields $B > 10^{11} G$ Ζ $\omega < \omega_B = eB/m_ec$ shock X-rays post-shock region

neutron star

X-ray pulsars

Large scattering optical depth in the column

Strong magnetic fields $B > 10^{11} G$

$$\omega < \omega_B = eB/m_ec$$

O and E/X polarization states $\sigma_O \sim \sigma_{\rm T}, \ \sigma_X \sim \left(\frac{\omega}{\omega_B}\right)^2 \sigma_{\rm T}$

Strong polarization fan vs pencil diagram

Complications:

cyclotron resonances, density gradient uncertain geometry (wall) sensitivity to parameters (accretion rate, B) reflection from the star

> Basko, Sunyaev 1975 Meszaros et al. 1988 Wang et al. 1988 Becker, Wolf 2007 Mushtukov et al. 2015

Discovery of ULX pulsar in M82: supercritical luminosity

Bachetti et al. 2014

Rotation-powered pulsars

$$\frac{dE}{dt} \approx -\frac{\Omega^4 \mu^2}{c^3}$$

How is rotational energy converted to radiation?

Recent developments: rethinking pulsar mechanism

direct global numerical experiment

$$d\mathbf{p}/dt = e\,\mathbf{E} + e\,\mathbf{v} \times \,\mathbf{B}/c$$

$$\partial \mathbf{B} / \partial t = -c \nabla \times \mathbf{E}$$

 $\partial \mathbf{E}/\partial t = c \nabla \times \mathbf{B} - 4\pi \mathbf{J}$

"particle in cell" (PIC):

- fields calculated on a grid
- particles followed individually
- photon emission, tracing, and pair creation: Monte-Carlo

Time = 0.08

electric current

Chen, AB (2014)

aligned rotator charge density: - blue + orange

gamma-rays/pair creation

Synchrotron and curvature radiation

$$P_{\nu} \approx \frac{4\pi e^2 \nu_c}{\sqrt{3}c \gamma_e^2} \, 1.8 \left(\frac{\nu}{\nu_c}\right)^{1/3} \exp\left(-\frac{\nu}{\nu_c}\right)$$

synchrotroncurvature $\nu_c = \frac{3}{4\pi} \frac{eB_{\perp}}{m_e c} \gamma_e^2$ $\nu_c = \frac{3}{4\pi} \frac{c}{R_c} \gamma_e^3$ polarization $\perp \mathbf{B}$ polarization || \mathbf{B}

power law electrons : $P_{\nu} \propto \nu^{-(p-1)/2}$ $\left[\frac{dN_e}{d\gamma_e} \propto \gamma_e^{-p}\right]$ polarization degree $\Pi = \frac{p+1}{p+7/3}$ [fast cooling : $P_{\nu} \propto \nu^{-1/2}$ $P_{\nu} \propto \nu^{-p/2}$]

phase-dependent polarization degree and angle (cf. optical and radio polarization of Crab pulsar)

Surface glow

heat flux from interior can exceedspindown power in slow rotators– XDINS, magnetars, older pulsars

Radiative transfer in the atmosphere

$$h = 1 - 10 \text{ cm}$$
 $\rho = 10^{-1} - 10^3 \frac{\text{g}}{\text{cm}^3}$

- -chemical composition
- equation of state
- -ionization
- --phase (condensed?)
- magnetic field

Potekhin et al. 2004, 2014 Suleimanov et al. 2010 Taverna et al. 2015 Gonzalez et al. 2016

Polarization states in surface layers

eigen states are determined by the dielectric tensor:

plasma + vacuum polarization

vacuum dominates where

$$\rho < 1 \left(\frac{B}{10^{14} \text{ G}}\right)^2 \left(\frac{E}{1 \text{ keV}}\right)^2 \frac{\text{g}}{\text{cm}^3}$$

O-mode and X-mode

suppressed opacity for X-mode

$$\sigma_X \sim \left(\frac{\omega}{\omega_B}\right)^2 \sigma_{\rm T}$$

Polarization states in surface layers

Ho et al. 2008

Surface X-rays go through transparent magnetosphere:

modes "adiabatically track" the local B:

$$(n_O - n_X)kl_B \gg 1$$
 $n_O - n_X = \frac{\alpha}{30\pi} \left(\frac{B}{B_Q}\right)^2 \sin^2\theta_{kB}$

 $\Rightarrow \text{ polarization set at} \qquad \left[B_Q = \frac{m_e^2 c^3}{\hbar e} \approx 4.4 \times 10^{13} \text{G}\right]$ decoupling radius $\gg R_{\star}$

Heyl, Shaviv, Lloyd 2003

calculations of expected polarization: see talk by D. Gonzalez

Strong linear polarization

Magnetars: active magnetosphere

Thompson et al. 2002; AB 2009; Parfrey et al. 2013

Scattering in the magnetosphere

twisted field => electric discharge: relativistic e+- pairs

$$\omega \ll \omega_B ("1D" \text{ electrons}): \sigma_O \sim \sigma_T / \gamma_e^2$$
$$\sigma_X \sim \sigma_T \left(\frac{\omega}{\omega_B}\right)^2$$

optically thin magnetosphere except at the "resonance surface" where $\omega_B = \gamma_e (1 - \beta_e \cos \theta) \omega$

$$\sigma_{\rm res} \sim r_e \, \lambda \gg \sigma_{\rm T}$$

resonant scattering: mode switching:

AB 2013; Hascoet et al. 2014; An et al. 2015

Magnetars: polarization of persistent emission

AB 2013

Over-twisted magnetosphere: loss of equilibrium and reconnection

Parfrey et al. 2013

Magnetar flares

Thompson, Duncan 2001

tail of the flare : 400 s (many rotations) $E_{\rm tail} \sim 10^{44} \ {\rm erg}$

GRB prompt emission

opaque heated fireball

AB 2013

Radiative transfer calculation (with phenomenological heating)

$$L_{\rm JET} = 10^{52} {\rm ~erg~s^{-1}}$$

 $\eta = 300$
 $\varepsilon_B = 0.01$

GRB 090902B

Yonetoku et al. (2011)

Promising polarization tests

- Signatures of reconnection/outflows from black holes
- QPO polarization
- Diagnostics of transfer in accretion columns
- Mechanism and location of pulsar emission (phase resolved)
- Vacuum transfer of surface radiation in XDINS
- Resonant scattering in magnetars (phase resolved)
- Synchrotron radiation in GRBs