



# Supergiant Fast X-ray Transients with eXTP

P. Romano (INAF-OA Brera, Italy), E. Bozzo (ISDC, Switzerland)

> For Neil Gehrels Captain of a tight but happy ship

High Throughput X-ray Astronomy in the eXTP Era, Rome, Feb 6-8 2017



#### Outline

# **Observations of SFXTs**

- Outbursts / bright flares
- Intermediate states
- Low states
- Emission/cyclotron lines
- Periods: Orbital, and Superorbital
- Periods: Spin

eXTP, with its combination of large collecting area and energy resolution in a wide energy band (0.2-50 keV) and large FoV will dramatically deepen the knowledge of SFXTs





# SFXTs as fast hard transients

 Discovered by large area instruments (e.g. INTEGRAL/ ISGRI, Swift/BAT) – only >20 keV

(see e.g., Sguera+ 2005, 2006, 2008; Grebenev+ 2007; Leyder+ 2007)



(Sguera+2005,A&A 444, 221)

- flares peaking at 10<sup>36</sup>-10<sup>38</sup> erg s<sup>-1</sup> (hr)
- spectrum during flare ~ accreting NS
- a few SFXTs are X-ray pulsars ( $P_{spin} < 10^3 \text{ s}$ ), probably NSs;  $P_{orb} \sim 3-50 \text{ d}$
- large X-ray dynamic range (3-6 orders of magnitude)
- association with OB supergiant companions. Most emission from wind accretion.
- Sample: ~10 SFXTs, ~10 candidates



Supergiant Fast X-ray Transients

Swift Catching Gamma-Ray Bursts on the Fly

### SFXTs as 'slower' soft transients

- Discovered by large area instruments (e.g. INTEGRAL/ ISGRI, Swift/BAT) – only >20 keV (see e.g., Sguera+ 2005, 2006,2008; Grebenev+ 2007; Leyder+2007)
- Fast follow-up by Swift/XRT revealed a rich phenomenology in the soft X-rays but
   XRT has low effective area and reduced timing capabilities
   to search for pulsations (Romano+ 2007-2016; Sidoli+ 2007-2009, Farinelli+2011)



(Romano, 2015, JHEAP, 7, 126)

Supergiant Fast X-ray Transients



#### SFXTs as hard to catch transients

- Discovered by large area instruments (e.g. INTEGRAL/ISGRI, Swift/ BAT) – only >20 keV (see e.g., Squera+ 2005, 2006,2008; Grebenev+ 2007; Leyder+2007)
- Fast follow-up by Swift/XRT (0.2-10 keV), revealed a rich phenomenology in the soft X-rays but XRT has low effective area and reduced timing capabilities to search for pulsations (Romano+ 2007-2016; Sidoli+ 2007-2009;Farinelli+2011)
- Pointed observations by focusing instruments (*Chandra, Suzaku, XMM-Newton, NuSTAR*) significantly increased knowledge at <10 keV (iron lines, variable absorption, clumps, ionization...) but catching a bright flare requires extreme luck!</li>

(in't Zand 2005; Rumpy+ 2009; Bozzo+ 2011,Bhalerao+2015,Bozzo+2016)

#### What are the perspectives for SFXTs from eXTP?



#### SFXTs with WFM: monitoring

#### Chances to catch an outburst/bright flare with WFM?



photon-collecting area for a pointing toward the Galactic Center

#### WFM monitoring: All SFXTs in one shot when pointing toward the Galactic center

High Throughput X-ray Astronomy in the eXTP Era, Feb 6-8 2017



#### SFXTs with WFM: flares

#### **Predicted number of bright flares (in excess of 100 mCrab)**

by using the The 100-month Swift catalogue of SFXTs (Romano+2014,A&A,562,A2)

| NAME            | Зyr | 5yr | In 5 (3) years we can expect<br>>~ 185 (100) bright flares from known SFXTs |
|-----------------|-----|-----|-----------------------------------------------------------------------------|
| IGRJ08408-4503  | 3   | 4   |                                                                             |
| IGRJ16465-4507  | 0   | 1   |                                                                             |
| IGRJ16479-4514  | 30  | 51  | This is a lower limit because it is based on PAT                            |
| XTEJ1739-302    | 16  | 27  | This is a lower limit because it is based on BAT                            |
| IGRJ17544-2619  | 14  | 22  |                                                                             |
| SAXJ1818.6-1703 | 9   | 16  | <ul> <li>which sensitivity is lower than the WFM</li> </ul>                 |
| AXJ1841.0-0536  | 10  | 17  | <ul> <li>the instantaneous FOV is smaller</li> </ul>                        |
| AXJ1845.0-0433  | 4   | 7   |                                                                             |
| IGRJ18483-0311  | 13  | 23  | And we expect to <b>discover</b> many more SFXTs!                           |
| IGRJ16328-4726  | 1   | 2   |                                                                             |
| IGRJ16418-4532  | 6   | 11  | Ducci+ 2014, A&A, 568, A76:                                                 |
|                 |     |     | $N(SFXTs) = 37^{+53}$                                                       |
| total           | 109 | 185 | · · · · · · · · · · · · · · · · · · ·                                       |

#### Swift observations of outbursts



Swift Catching Gamma-Ray Bursts on the Fly

Broad-band spectroscopy during outburst (XRT+BAT) 0.3-10 keV + 15-150 keV

absorption
 & spectral cut-off

 comparison with models for accreting NS





(Romano+2008, ApJ, 680, L137)

Cutoff power-law model:  $N_{H} = 6.49517 \times 10^{22} \text{ cm}^{-2}$   $\Gamma = 0.972905$   $E_{c} = 13.5007 \text{ keV}$ Norm = 0.961163  $Flux_{2-10keV} = 5.9 \times 10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1}$ 

(Romano+2011, MNRAS, 412, L30)

Cutoff power-law model:  $N_{H} = 2.18897 \times 10^{22} \text{ cm}^{-2}$   $\Gamma = 0.221797$   $E_{c} = 16.289 \text{ keV}$ Norm = 1.79239E-02  $Flux_{2-10keV} = 5.5 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1}$ 



#### WFM simulations: outbursts



 $-\Delta N_H/N_H$  within ~20% in 2ks - $\Delta \Gamma/\Gamma$  within ~30% in 2ks WFM allows to **follow the spectral evolution during the flare** (every few ks) with a good energy resolution and broad **UNINTERRUPTED** energy range

High Throughput X-ray Astronomy in the eXTP Era, Feb 6-8 2017



#### WFM simulations: outbursts +cyclotron lines



Very little is known on the SFXT magnetic field WFM might help investigating the presence of cyclotron lines that previously might have been undetected due to: - lack of energy coverage/instruments overlap

- poor spectral resolution
- too long integration times

#### WFM well suited to discover these features with integration times as low as 2ks



#### IGR J17544-2619 (Bhalerao+2015, MNRAS, 447,2274)

Joint fit to *NuSTAR* and *Swift*/XRT data with bbodyrad + nthcomp as continuum  $Flux_{2-10keV} = 1.3 \times 10^{-11} erg cm^{-2} s^{-1}$ 

 $E_{cycl}$ =16.9 ± 0.3 keV Width =1.7 ± 0.6 keV



#### **Daily resolution**

Swift

- Bright outbursts
- Dynamical range: 4-5 orders of magnitude (excl. 16465 and 16493, non SFXTs)

Catching Gamma-Ray Bursts on the Fly

- Emission outside of outbursts
  - variability: days to months

#### **Minute resolution**

- Variability observed on all timescales and intensity levels
- Short timescales 1 order of mag.
   (1 ks, down to 0.1cps)
- Evidence for clumps

High Throughput X-ray Astronomy in the eXTP Era, Feb 6-8 2017



High Throughput X-ray Astronomy in the eXTP Era, Feb 6-8 2017



#### (Romano+2009, MNRAS, 399, 2021; 2011, MNRAS, 410, 1825) Table 8. XRT spectroscopy of the three SFXTs (2007-2009 data set).

| Name<br>Absorbed power law | Spectrum              | Rate (counts s <sup>-1</sup> ) | $N_{\rm H} \ (10^{22} {\rm ~cm^{-2}})$ | Parameter<br>Γ      | Flux <sup><i>a</i></sup><br>(2–10 keV) | Luminosity <sup>b</sup><br>(2–10 keV) | $\chi_{\nu}^{2}$ /d.o.f. <sup><i>c</i></sup><br>C-stat (per cent) |
|----------------------------|-----------------------|--------------------------------|----------------------------------------|---------------------|----------------------------------------|---------------------------------------|-------------------------------------------------------------------|
| IGR J16479-4514            | High                  | >0.55                          | $8.2^{+0.8}_{-0.7}$                    | $1.1^{+0.2}_{-0.2}$ | 120                                    | 5                                     | 1.2/193                                                           |
| <b>1</b> 2×10-10           | Medium                | [0.22-0.55]                    | $8.6^{+0.8}_{-0.8}$                    | $1.3^{+0.2}_{-0.2}$ | 53                                     | 2                                     | 0.9/197                                                           |
| 1.2/10                     | Low                   | [0.06-0.22[                    | $7.1^{+0.6}_{-0.6}$                    | $1.4^{+0.2}_{-0.1}$ | 17                                     | 0.7                                   | 1.0/205                                                           |
| 1.3x10 <sup>-12</sup>      | Very low <sup>d</sup> | < 0.06                         | $3.3_{-0.0}^{+0.4}$                    | $1.8_{-0.2}^{+0.3}$ | 1.3                                    | 0.04                                  | 302.5(99.5)                                                       |
| XTE J1739-302              | High                  | >0.405                         | $3.7^{+0.5}_{-0.4}$                    | $0.8^{+0.2}_{-0.1}$ | 120                                    | 1                                     | 1.0/160                                                           |
| <b>F 1 0 1 2</b>           | Medium                | [0.07-0.405[                   | $3.8^{+0.4}_{-0.4}$                    | $1.4^{+0.1}_{-0.1}$ | 18                                     | 0.2                                   | 0.9/164                                                           |
| 5x10 <sup>-15</sup>        | Very low <sup>d</sup> | < 0.07                         | $1.7^{+0.1}_{-0.0}$                    | $1.4_{-0.2}^{+0.2}$ | 0.5                                    | 0.004                                 | 321.9(98.6)                                                       |
| IGR J17544-2619            | High                  | >0.25                          | $1.9_{-0.2}^{+0.3}$                    | $1.3^{+0.1}_{-0.1}$ | 46                                     | 0.8                                   | 1.0/118                                                           |
|                            | Medium                | [0.07-0.25]                    | $2.3^{+0.3}_{-0.3}$                    | $1.7^{+0.2}_{-0.2}$ | 14                                     | 0.3                                   | 1.0/108                                                           |
|                            | Very $low^d$          | < 0.07                         | $1.1^{+0.1}_{-0.0}$                    | $2.1^{+0.2}_{-0.2}$ | 0.2                                    | 0.003                                 | 183.1(85.1)                                                       |

<sup>*a*</sup>Average observed 2–10 keV fluxes in units of  $10^{-12}$  erg cm<sup>-2</sup> s<sup>-1</sup>.

<sup>b</sup>Average 2–10 keV X-ray luminosities in units of  $10^{35}$  erg s<sup>-1</sup> calculated adopting distance <sup>c</sup>Reduced  $\chi^2$  and d.o.f., or C-stat and percentage of realizations (10<sup>4</sup> trials) with statistic >  $^{d}$ Fit performed with the constrained column density (see Section 6).

#### (Bozzo+2010, A&A, 519,A6)

5x10<sup>-13</sup>

|                   |                     | OBS1                 |                         |                     | OBS2                 |                         |
|-------------------|---------------------|----------------------|-------------------------|---------------------|----------------------|-------------------------|
| cts/s             | < 0.1               | 0.1-0.4              | >0.4                    | < 0.1               | 0.1 - 0.4            | >0.4                    |
| $N_{\rm H}{}^a$   | $2.9^{+0.5}_{-0.6}$ | $2.7\pm0.3$          | $2.6\pm0.3$             | $4.1^{+0.7}_{-0.6}$ | $3.2^{+0.3}_{-0.2}$  | $3.5 \pm 0.4$           |
| Г                 | $1.8 \pm 0.3$       | $1.4 \pm 0.1$        | $1.1 \pm 0.1$           | $1.8 \pm 0.3$       | $1.2 \pm 0.1$        | $1.0\pm0.1$             |
| $F_{obs}{}^{b}$   | $4.7^{+0.9}_{-3.2}$ | $32.2^{+3.4}_{-7.1}$ | $123.8^{+10.0}_{-20.7}$ | $9.3^{+1.2}_{-6.9}$ | $42.0^{+4.5}_{-7.6}$ | $153.6^{+13.7}_{-26.5}$ |
| $\chi^2_{red}$    | 1.08                | 1.11                 | 1.00                    | 0.74                | 1.04                 | 1.00                    |
| d.o.f.            | 33                  | 93                   | 105                     | 34                  | 132                  | 89                      |
| EXP. <sup>c</sup> | 18                  | 10                   | 3                       | 10                  | 11                   | 2                       |

Notes. The model used to fit the data is an absorbed CUTOFFPL (we fixed the cutoff energy at 13 keV, see text for details). (a) in units of 10<sup>22</sup> cm<sup>-2</sup>. <sup>(b)</sup> Observed flux in the 0.5–10 keV energy band in units of 10<sup>-13</sup> erg cm<sup>-2</sup> s<sup>-1</sup>. <sup>(c)</sup> Exposure time in ks. High Throughput X-ray Astronomy in the eXTP Era, F&b 6-8 2017

normalized counts s-1 keV-

### 0.1 0.0 $10^{-3}$ 2 5 15 10 Energy (keV)

XTEJ1739-302 (Epic-PN OBS1)

#### SFXTs with WFM: High/Intermediate/low states



(in Romano+2009, 2011, by scaling sensitivity of the WFM)



We expect to have up to **several detections per day** per object A very good monitoring of these objects "for free"!

WFM → ~daily broad band monitoring of all SFXTs
→ Determination of Orbital and Superorbital periods



#### SFXTs with WFM: low states

#### WFM limiting fluxes for a 5 $\sigma$ detection

| NAME             | Ехро    | Limit Flux        |
|------------------|---------|-------------------|
|                  | (5yr,s) | (5yrs, erg/cm²/s) |
| IGR J08408-4503  | 5.5E7   | 2.6E-12           |
| IGR J11215-5952  | 6.5E7   | 2.4E-12           |
| IGR J16465-4507  | 4.2E7   | 3.0E-12           |
| IGR J16479-4514  | 4.2E7   | 3.0E-12           |
| XTE J1739-302    | 3.6E7   | 3.2E-12           |
| IGR J17544-2619  | 3.5E7   | 3.2E-12           |
| SAX J1818.6-1703 | 3.1E7   | 3.4E-12           |
| AX J1841.0-0536  | 3.1E7   | 3.5E-12           |
| AX J1845.0-0433  | 3.0E7   | 3.5E-12           |
| IGR J18483-0311  | 3.0E7   | 3.5E-12           |
| IGR J16195-4945  | 4.4E7   | 2.9E-12           |
| IGR J16207-5129  | 4.5E7   | 2.9E-12           |
| IGR J16328-4726  | 4.2E7   | 3.0E-12           |
| IGR J16418-4532  | 4.2E7   | 3.0E-12           |
| IGR J17354-3255  | 3.7E7   | 3.2E-12           |
| AX J1820.5-1434  | 3.1E7   | 3.5E-12           |



- 1yr exposure map
- sample of expected pointings (RXTE program)
- Pointing constraints (Sun, thermal, orbital)

WFM  $\rightarrow$  throughout the mission WFM can probe SFXT states down to a few ~3x10<sup>-12</sup> erg cm<sup>-2</sup> s<sup>-1</sup> luminosities of L~10<sup>32</sup> erg s<sup>-1</sup> ~ quiescence

EXTPendence - ray Timing and Polarinetry Mission

WFM simulations summary

# SFXT with WFM

- ideal to catch (110-185) short bright outbursts that reach
  - Flux<sub>2-10keV</sub> ~ 6x10<sup>-9</sup> erg cm<sup>-2</sup> s<sup>-1</sup>
  - $\Delta N_H / N_H$  and  $\Delta \Gamma / \Gamma$  within ~30% in 2ks
  - Comparable with *Swift*/XRT
- intermediate short flares  $Flux_{2-10keV} \sim 10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1}$ 
  - $\Delta N_H / N_H$  and  $\Delta \Gamma / \Gamma$  ~50% in >=5ks
- difficult below Flux<sub>2-10keV</sub> ~ 10<sup>-9</sup> erg cm<sup>-2</sup> s<sup>-1</sup> (since outburst lasts ≤ 5ks) but
- Can offer ~daily broad band monitoring of all SFXTs
  - P<sub>orb</sub> & P<sub>superorb</sub>
- throughout the mission WFM can probe SFXT states down to a few ~3x10<sup>-12</sup> erg cm<sup>-2</sup> s<sup>-1</sup> or L~10<sup>32</sup> erg s<sup>-1</sup>
   ~ quiescence

#### Lines in SFXTs



IGR J16479-4514 in eclipse (Bozzo+2008, MNRAS,391,L108)

 $N_{H} = 35.2461 \times 10^{22} \text{ cm}^{-2}$   $\Gamma = 0.98$ Norm = 0.002 KaNorm=4.62569 × 10<sup>-5</sup> Flux<sub>2-10keV</sub> = 1×10<sup>-11</sup> erg cm<sup>-2</sup> s<sup>-1</sup>



AX J1841-0536 clump ingestion (Bozzo+2011, A&A,531,A130)  $N_{H} = 10.9191 \times 10^{22} \text{ cm}^{-2}$  $\Gamma = 1.08471$ Norm = 0.04666 KaNorm=2x10<sup>-4</sup> Flux<sub>2-10keV</sub> = 3.2x10<sup>-10</sup> erg cm<sup>-2</sup> s<sup>-1</sup>

esa



LAD + SFA simulations: SFXT lines 1 (eclipse)





IGR J16479-4507 2ks WFM during eclipse  $N_{H} = 35 \times 10^{22} \text{ cm}^{-2}$  $\Gamma = 0.98$ Norm=2x10<sup>-3</sup> KaNorm=4.6 x10<sup>-5</sup> Flux<sub>2-10keV</sub> = 1x10<sup>-11</sup> erg cm<sup>-2</sup> s<sup>-1</sup>

emission lines can be recovered quite nicely in 1-2 ks NB: Iron line as measured by XMM-Newton in 2008 in 28 ks

#### Lines in SFXTs



esa (esa

AX J1841-0536 (Bozzo+2011, A&A,531,A130)

#### Ingestion of a massive clump of matter by the neutron star



High Throughput X-ray Astronomy in the eXTP Era, Feb 6-8 2017



#### LAD + SFA simulations: SFXT lines 2



#### AX J1841-0536 during clump ingestion

AX J1841-0536 1ks LAD & SFA  $N_{H} = 10.9191 \times 10^{22} \text{ cm}^{-2}$   $\Gamma = 1.08471$ Norm = 0.04666 KaNorm=2x10<sup>-4</sup> Flux<sub>2-10keV</sub> = 3.2x10<sup>-10</sup> erg cm<sup>-2</sup> s<sup>-1</sup>

emission lines can be recovered quite nicely in 1 ks and can probe clump material ionized by the high X-ray flux NB: compare with 1ks of XMM-Newton Summary & Conclusions



#### eXTP

- WFM will detect hundreds of outbursts that can be studied in depth and +broad-band spectra (FOR FREE!)
- WFM will provide daily monitoring (+broad-band spectra) for bright and intermediate states (P<sub>orb and</sub> P<sub>superorb</sub>) (FOR FREE!)
- LAD & SFA fine time-resolved spectroscopy of pointed (or periodic) sources with unprecedented detail and on typical variability timescales
- Unprecedented capabilities of detecting pulsations (P<sub>spin</sub>)

# Thanks!

Swift SFXT Project
www.ifc.inaf.it/sfxt/

Contact point patrizia.romano@brera.inaf.it

Facebook Group www.facebook.com/groups/sfxts/