GRB Afterglows with eXTP

Xuefeng Wu

MiXiang Lan

Purple Mountain Observatory

eXTP Meeting, Roma, Italy, Feb. 6-8, 2017

Introduction

- 1. picture of GRB
- 2. Polarization models for GRB
- 3. magnetic field configuration and central engine

• X-ray observations in GRBs and its polarization

- 1. X-ray flares
- 2. X-ray plateau

• Summary

Introduction

- 1. picture of GRB
- 2. Polarization models for GRB
- 3. magnetic field configuration and central engine
- X-ray observations in GRBs and its polarization
 - 1. X-ray flares
 - 2. X-ray plateau
- Summary

Physical Picture of Gamma-Ray Bursts

Gehrels et al., 2002, Scientific American

Models on GRB polarization

Waxman, 2003, Nature, **423**, 388

Nonthermal emission: - synchrotron - (inverse-) Compton

large-scale B and syn: $P_L=(p+1)/(p+7/3)\sim70\%$

Large-scale B-field may exist in (1) Prompt GRB emission; (2) Early afterglows (reverse shock) (3) X-ray flares (4) X-ray plateaus

Magnetic field configurations and Corresponding central engines

Spruit et al. 2001

Swift Canonical X-ray lightcurve X-ray polarimeter – a new era for GRBs! < -3 I. steep decay X-ray flare **III. Normal decay** Π ~ -0.5 Ш t_{b3}: 10⁴ – 10⁵ s II. plateau ~ -1.2 · -2 t_{b1} : 10² - 10³ s t_{b2} : 10³ - 10⁴ s IV. jet phase

Zhang, Fan, Dyks et al. 2006, ApJ, 642, 354

Introduction

- 1. picture of GRB
- 2. Polarization models for GRB
- 3. magnetic field configuration and central engine

• X-ray observations in GRBs and its polarization

- 1. X-ray flares
- 2. X-ray plateau
- Summary

X-ray flares fast rise + steep decay

Burrows et al. 2005, Science, 309, 1833

Explanation: late internal shocks (Burrows et al. 2005; Fan & Wei 2005; Zhang et al. 2006; Wu, Dai, Wang et al. 2005),

implying a long-lasting central engine.

X-ray flare sample

Swift XRT observations (May 1 2005 – April 30 2015) 476 flares in 201 GRBs (1/5 Swift triggered GRBs in 10 years)

Peak time centered at ~300 s

duration time centered at ~300 s

Peak flux centered at ~3e-9 erg/cm^2/s

fluence distribution of X-ray flares

Minimum Detectable Polarization:

X-ray flare sample: expected eXTP detection possibility

Swift XRT observations (May 1 2005 – April 30 2015)

476 flares in 201 GRBs (1/5 Swift triggered GRBs in 10 years)

Assume

(1) XTP flux sensitivity = $4.4e-15 (t/10^4 s)^{-1/2} erg/cm^2/s$

(2) XTP slewing speed = (3 - 10) degrees per minute

(angle between the GRB and XTP boresight)

X-ray flare sample: expected eXTP detection possibility

Swift XRT observations (May 1 2005 – April 30 2015) 476 flares in 201 GRBs (1/5 Swift triggered GRBs in 10 years)

Introduction

- 1. picture of GRB
- 2. Polarization models for GRB
- 3. magnetic field configuration and central engine

• X-ray observations in GRBs and its polarization

- 1. X-ray flares
- 2. X-ray plateau
- Summary

X-ray Plateaus

- Swift discovery and hydrodynamic origin

X-ray plateau sample

RWB model with the Poynting flux injection

Dai & Lu 1998

Structured ejecta model

 $M \propto \Gamma^{-s}$

- Introduction
 - 1. picture of GRB
 - 2. Polarization models for GRB
 - 3. magnetic field configuration and central engine
- X-ray observations in GRBs and its polarization
 - 1. X-ray flares
 - 2. X-ray plateau
- Summary

GRB Afterglows with eXTP: Summary

Polarization of GRB X-ray emission most GRBs have X-ray flares or plateaus large-scale B-field & physical origins magnetic field configuration & central engine Input of X-ray flare simulation (reference to Toma et al. 2009, ApJ) 1. GRB rate (redshift distribution)

 $\dot{\rho}_{\rm GRB}(z) = k_{\rm GRB} R_{\rm SF}(z) f(z)$

2. GRB jet half-opening angle distribution

 $f(\theta_j)d\theta_j \propto \begin{cases} \theta_j^{q_1}d\theta_j, & \text{for } 0.001 \leqslant \theta_j \leqslant 0.02, \\ \theta_j^{q_2}d\theta_j, & \text{for } 0.02 \leqslant \theta_j \leqslant 0.2, \end{cases}$

- **3.** X-ray flare energies (analogue to Frail relation) $E_{iso}\theta_j^2 / 2 = 10^{50}\xi_1 \text{ erg}$
- **4. Viewing angle distribution** $p(\theta_v) d\theta_v = \sin \theta_v d\theta_v$

$$\Pi_0 = \Pi_0^{syn} \equiv \begin{cases} (\alpha+1)/(\alpha+\frac{5}{3}), & \text{for } x \le \beta - \alpha \\ (\beta+1)/(\beta+\frac{5}{3}), & \text{for } x \ge \beta - \alpha \end{cases}$$

5. Amati relation and Band Function

$$E_p = 80\xi_2 (E_{\rm iso}/10^{52} \text{ erg})^{1/2} \text{ keV}$$
²²